Quantcast
Channel: 科學月刊 – PanSci 泛科學
Viewing all 153 articles
Browse latest View live

光波操縱師─神奇的光子晶體--《科學月刊》

0
0

欒丕綱/清華大學物理博士,中央大學光電系副教授。研究專長為光子晶體,聲子晶體,以及超穎材料。

mix1

(左)孔雀羽毛(右上)變色龍的皮膚(Source: Tambako The Jaguar)(右下)蝴蝶翅膀 自然界的光子晶體

有沒有能夠抓住光,卻不消滅光子的方法?光子晶體不僅能讓光轉彎,還能讓動物展現美麗的色彩!

1980 年代時,人類對於光的認識已經很深入。那時人們已懂得使用透鏡組件,藉由改變折射率與介質表面的特定形狀以控制光線的傳播方向,如使用望遠鏡觀察宇宙,製作顯微鏡觀察微生物。

人們知道單一頻率的光通過雙狹縫會有干涉現象,而光波通過小尺度的物體會產生繞射與散射。利用光從「密介質(折射率大的介質)」傳向「疏介質(折射率小的介質)」,入射角大於「臨界角」時會發生的全反射現象,可以設計出波束分離器(beam splitter)、波導(waveguide),與光纖。利用光是電磁波的事實,可以藉著控制光的偏振與相位做出光學波片(wave plate)、濾波器,以及調制器 (modulator)。利用量子力學與半導體物理的知識,人們知道如何操控光子與原子的交互作用,製造出所需要的雷射以供進一步應用。

以上這些控制手段似乎缺少了什麼?仔細觀察,會發現這些對光的控制手段可歸納為以下幾種:(一)控制光的傳播方向,(二)控制光的傳播區域/ 範圍,(三)控制光的強度,(四)控制光波的相位與偏振,(五)控制光的相位一致性以及傳播方向的準確度。以上這些控制手段的共同特色就是「不能阻止光的傳播」。雖然光子可以被原子吸收或放射出來,但若試圖阻止光的傳播,那麼光子只能藉著被材料吸收而消失,轉換為其他能量,例如熱能。

04

光子晶體模型。Source: ENERGY.GOV

光子晶體的發想

1987 年左右,雅布羅諾維奇(Eli Yablonovitch)與約翰(Sajeev John)兩位科學家不約而同地思考著阻止光傳播卻不消滅光子的可能性。

雅布羅諾維奇是一位實驗物理學家,曾任職貝爾通信研究所(Bell Communications Research)的研究員。他當時思考的問題主要是如何抑制原子的「自發輻射(spontaneous emission)」以減少能量的浪費,並增加雷射的效率。根據雅布羅諾維奇教授的回憶,當時曾有一些研究者建議將發光的原子置於「兩面金屬牆」之間;另一些研究者則建議使用「一維布拉格光柵(1D Bragg grating)」以取代金屬牆。然而,雅布羅諾維奇博士認為這兩種方法都行不通。

第一種方法只能阻擋某一種偏振的光,因此只有一半的效果。另一種方法雖然能阻擋朝著布拉格光柵週期方向傳播的光,但是對於朝著垂直於週期方向(此方向介質是均勻的)傳播的光卻沒有效果。雅布羅諾維奇於是試著在紙上畫出他認為行得通的三維週期結構,並在往後的幾年中不停試著對介電質鑽洞,以找出確實可行的週期結構。經過了好幾年的失敗,並在跟理論物理學家的合作下,在鑽了大約五十萬個洞之後,終於找出了理想可行的三維週期結構。

另一位光子晶體概念的提出者約翰,則是基於完全不同的理由而提出這個概念。約翰是一位理論物理學家,那時的他是一位普林斯頓大學(Princeton University)的年輕助理教授。當時他所思考的問題是,如何讓光在介質中的傳播停下來。

故事先回到1958 年,當年服務於貝爾實驗室(Bell Labs)的凝態物理學家(condensed matter physicist) 安德森(P. W. Anderson,1977年諾貝爾物理獎得主)從理論上發現了一個很驚人的現象,後來被稱作安德森局域化(Anderson localization):在一個充滿隨機分布的雜亂位能(random potential)的材料裡,電子可以因「多重散射(multiple scattering)」而被困在其中無法移動。根據量子力學,支配電子的各種行為的是薛丁格方程式(Schrödinger equation)─ ─ 這是一個波方程式(wave equation),因此安德森局域化現象其實是一個波現象,與電子的粒子性似乎並沒有直接關係。科學家們理解到這一點後,忍不住好奇的問:這樣奇特的波現象會不會也發生在光波與聲波系統?如果有,能不能觀察到?

約翰的博士論文所研究的就是局域化現象,因此他對於安德森局域化的理論內涵有很深的理解與掌握。對應於電子系統的隨機位能,在光學系統內所要準備的是具有隨機分布的凌亂折射率的透明介質。然而,研究者發現,理論上要達到把光完全困住的結果,所需要的介質樣品必須非常大,而且在實驗上很不容易把這個現象,與光在傳播過程中介質對光能量的逐步吸收效應區分出來。約翰於是建議先做出週期性的介質,再將介質的週期稍微弄亂一些,如此在某些頻段就可以用較小的介質樣品將光完全困住。

雅布羅諾維奇與約翰目前分別是加州大學柏克萊分校(University of California, Berkeley)與加拿大多倫多大學(University of Toronto)的教授。根據雅布羅諾維奇的說法,當年他們在學術界頂級的物理期刊《物理評論通訊》(Physical Review Letters)各自發表了他們的第一篇光子晶體研究論文,兩篇論文的刊登日期相隔不到一個月。當他們聽說了彼此獨立提出了相似的研究概念後,就相約吃午飯,並一起為這個概念取名為光子晶體(Photonic Crystals)。

現今看來,這個既含有「光子」又含有「晶體」的名字取得十分誘人。這個說法從每年有眾多光子晶體相關的研究論文被發表就可以看得出來。另一個觀察指標則可以簡單地經由Google搜尋查到,這兩位先驅的第一篇光子晶體論文目前分別累積了13725次與9582次引用次數。不過,在論文發表後,他們的論文並未立刻引起其他研究者注意。事實上,雅布羅諾維奇此論文發表後的頭三年,完全沒有其他人引用,前五年也只被引用兩次,而且這兩次還都是雅布羅諾維奇教授自己引用的。然而,進入90年代後,半導體製程技術的進步使得人們很容易製作尺寸從數百奈米至數微米的週期結構,而電腦運算資源的大幅成長,也讓人們很容易從理論上去計算出所設計的光子晶體的光學特性。這兩方面的重要發展促使了光子晶體的研究無論在數量與速度上,都以指數函數的方式隨時間成長。

光子晶體基本性質

講了那麼多故事後,那麼到底光子晶體的定義是什麼呢?背後的物理原理為何?所謂的光子晶體,其實就是「介電質的週期結構(periodic structure of dielectrics)」。

所謂介電質(dielectrics),即非金屬的材料;而所謂週期結構,就是在空間上無窮次重複的圖樣(repeat patterns)。化學課本告訴我們:「完美的固態晶體具有週期性的原子排列」。光子晶體的週期結構就像那樣,只不過光子晶體是將晶體中的原子以介電質的「人工原子」取代,尺寸也較真實晶體放大了數十倍甚至是數百倍。另外,在普通的半導體晶體物質中,導電須依靠電子通過週期性的位能;而在光子晶體中,光傳播是靠光波通過具有週期性變化的介電常數/折射率的介電質材料。

在半導體的研究中,人們很早就知道,週期位能對電子傳播的影響就是產生了能帶結構(energy band structure)與能隙(energy band gaps),後者又稱禁制帶(forbidden bands)。也就是說,可以在半導體中傳導的電子,它們的能量分布是一段一段的,而這每一段被稱為一個能帶。與此類似,在光子晶體中可傳播的光,其頻率的分布也是一段一段的,每一段稱為一個「頻帶(frequency band)」。夾在相鄰的兩個頻帶之間的則是頻隙(frequency band gaps) 或帶隙。根據量子力學,光子的能量與它的振動頻率成正比,比例常數是普朗克常數h,因此我們也稱光子頻隙為光子能隙。

05

典型的週期介電質結構 (左)一維多層膜(中)介電層上之二維空氣柱(右)三維介電質「材堆」(woodpile)結構。

光子頻隙

為何會出現頻隙? 這不是個容易回答的問題。此處提供一個比較直覺的看法。當光波在週期結構中傳播時,會經歷多重散射,散射後的各分波與入射波一起疊加成總波場。這些分波疊加後在空間中形成建設性干涉與破壞性干涉的許多區域。在二維與三維的世界裡,破壞性干涉的區域若是形成各自分離的「孤島」,波能量仍可藉由連通的建設性干涉區,繞過這些孤島而傳播。反之,當建設性干涉的區域彼此互不相連,它們自己形成孤島時,波能量將無法傳遞。若在一整段頻率範圍內波能量都無法傳遞,則這一段頻率範圍就形成頻隙。

以上雖然說明了頻隙是波的一種破壞性干涉的效應,但很難從直覺上看出這個結果。頻隙可以很容易藉著不算太複雜的數值方法以電腦程式計算出來,但是幾乎不可能僅僅藉著用筆就推導出它在頻率軸上的正確位置與寬度。

光子晶體的應用

設計出這種有頻隙的光波介質,除了能將光波擋住,讓它傳播不了以外,有什麼積極性的應用嗎?答案是:有的。

通常用來製造光子晶體的方法,就是在一塊完整的介電質上周期性的打洞,或是用許多介電質小球或介電質柱子排成週期結構。利用光子晶體的頻隙特性,只要選擇將週期性做局部的破壞,就可以製造出許多有用的奈米光學元件。例如在介電質中製造「點缺陷(point defect,基本方法是在某一個該打洞的位置不打洞)」或「線缺陷(line defect,少打一整排洞)」,就可以將光波侷限在該缺陷附近以形成「共振腔(resonant cavity)」或是「光子晶體波導」。

(左)點缺陷應用於共振腔(中)線缺陷應用於波導(右)光波能量在直角轉彎的光子晶體波導中的分佈情形。

(左)點缺陷應用於共振腔(中)線缺陷應用於波導(右)光波能量在直角轉彎的光子晶體波導中的分佈情形。

傳統波導是利用全反射將光侷限在波導中,若是波導的轉彎角度過大,全反射條件就會被破壞,導致漏光。然而,光子晶體波導藉由頻隙效應將光鎖在波導內,工作原理與全反射無關,因此可以大幅度改善傳統波導大角度轉彎的光能損耗問題,實現光迴路的微小化。這使得在小尺度製造出「積體光路」以取代傳統「積體電路」變得可行,換句話說,使用光子取代電子作為資訊傳輸與處理媒介的可能性將大幅提高。基於這種可能性,雅布羅諾維奇甚至在一篇介紹光子晶體的科普文章中,稱光子晶體為「光的半導體」。利用同樣的原理,也可以製造出橫截面是含有點缺陷與週期結構的光子晶體光纖,用以輔助或取代部分傳統光纖。

負折射應用

除了頻隙效應,光子晶體的傳導頻帶其實也有妙用。透過光子晶體頻帶所提供的特殊色散關係(dispersion relation),光波在某些頻率範圍內表現出不尋常的傳播行為。而其中最有趣的就是負折射。當光由真空進入介質中, 若折射波折向法線的同一邊, 則根據司乃爾定律(Snell’s law) 可定義此介質具有負的折射率。

目前至少有兩種方式可實現負折射。第一種是利用光子晶體在「頻帶邊緣」(band edge)的特殊色散關係製造出「負群指數」(negative group index),其類比於半導體能帶理論中電子的「負等效質量」(negative effective mass)。第二種方式是製造一種在每一個晶胞(unit cell)中包含有共振器(resonators)的金屬性光子晶體。適當選取頻率範圍,可使此介質的等效介電常數、磁導率以及折射率皆為負值。

07

光子晶體的負折射現象。(這不是反射,藍色的線條為法線。)

2000年10月,倫敦帝國理工學院(Imperial College, London)的彭德里(J. B. Pendry)教授在《物理評論通訊》上發表一篇著名的文章,證明一塊折射率為-1的負折射介質板是一個「完美透鏡」,具有放大「消逝波(evanescent wave)」的神奇能力,可將波源「完美成像」而超越繞射極限。此文發表後,立即在學術界掀起了負折射研究的熱潮。在研究者的持續努力下,負折射的現象已證明確實存在,且Science 期刊基於其應用潛力(例如新式的讀寫頭等),將相關研究選為2003 年的十大科技成果之一。更有甚者,這方面的研究後來重新取了一個名字,現在被稱「超材料」或「超穎材料」,是當前最熱門的研究領域之一。超材料研究目前最受矚目的研究方向是可超越繞射極限的超級透鏡,以及可以將物體隱藏起來的隱形斗篷。這兩方面的報導常可在新聞中看到。具體的細節可以參考筆者從前寫的一篇文章。

上述各種研究所談的都是光波或電磁波,但其實聲波或彈性波的特性與電磁波非常類似,可使用同樣的手法處理。藉著製造週期性的彈性材料,例如週期性的混搭兩種彈性係數與質量密度不同的材料,也可以製造出「聲子晶體(phononic crystals,或稱 sonic crystals)」,像控制光波一樣地控制聲波與彈性波(例如使用頻隙效應做防震)。此外,若是把「聲波共振器」做週期性的排列,人們也可以做出聲波版本的超材料,可用以設計聲波版的超級透鏡或聲波斗篷。

上述的介紹或許會讓讀者以為這些能控制光的週期結構都是人造的,這個觀念其實錯了。現在科學家們已在許多生物的身上發現了光子晶體。簡單舉幾個常見的例子:孔雀的羽毛、蝴蝶的翅膀,以及變色龍的皮膚,都被發現隱藏著特定的週期結構。換句話說,光子晶體就是牠們得以美麗以及迅速變化偽裝的秘密。

光子晶體以及相關的聲子晶體以及超材料研究,在當前依然非常火熱。許多概念已經釐清,某些夢想已經實現,還有一些設計的元件已經有小幅度的商業化。本文只對光子晶體概念做了最粗淺的介紹,有許多近年來的重要發展,例如光子晶體在太陽能電池研究中的應用,都沒有辦法仔細介紹。有興趣的讀者可以試著從參考資料以及相關的網路資料中去進一步的尋找想知道與想學習的材料。

參考資料

  1. Yablonovitch, E., Photonic crystals: semiconductors of light, Sci Am., Vol. 285(6):47-51, 54-5., 2001.
  2. 欒丕綱,〈現代光學隱形術—從隱形斗篷到變換光學〉,《科學月刊》,508期,277 頁,2012年
  3. Teyssier, J. et al., Photonic crystals cause active colour change in chameleons, Nature Communications, Vol. 6: 6368, 2015.

FORNT本文選自《科學月刊》2015年5月號

延伸閱讀:
同步輻射光源解密
超短脈衝雷射改變世界

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

The post 光波操縱師─神奇的光子晶體--《科學月刊》 appeared first on PanSci 泛科學.


臺灣造山知多少? 噪訊地震學告訴你--《科學月刊》

0
0

作者:
黃梓殷/國立臺灣大學地質科學系。
陳映年/國立臺灣大學海洋研究所。
龔源成/國立臺灣大學地質科學系。

身為臺灣人,焉能不知臺灣之美?「依山傍海」是很多人對自己故鄉的描述,也是本島地景最大特色。臺灣島有三分之二的面積被山地及丘陵所覆蓋,其中更有超過260 座3000 公尺以上的高峰,密度堪稱為世界之最。讚嘆美景之餘,大家不免好奇:這壯闊的山脈究竟是什麼樣的鬼斧神工造成的呢?我們今年8月在Science 所發表的研究,談的就是這個課題。

為了解開地下之謎,科學家利用各種物理特性對地球進行了體檢,例如:溫度、壓力、電磁波、重力等,以及地震波速度。藉由這些特性的交互參照,可以將地球由內而外分成固態的內地核、液態的外地核、地函和最外圍的地殼。其中依照岩石的強度,亦可將地殼及部分上部地函合併為岩石圈,漂浮在相對較軟、黏滯且速度稍低的軟流圈上。本文所要探討的造山問題,就是發生在複雜多變的岩石圈裡。

爭論不休的造山謎團

根據「板塊構造學說」,岩石圈由許多板塊所組成,而獨特的臺灣島正是座落於歐亞板塊和菲律賓海板塊的邊界上,二者正以每年近8 公分的速度快速聚合。臺灣島的生成始於6 百萬年前,菲律賓海板塊攜帶呂宋島弧向西北挺進,並撞上歐亞板塊東南緣。演化迄今,在臺灣東邊,菲律賓海板塊沿著琉球海溝向北隱沒至歐亞板塊下方;而在臺灣南邊,則反過來由歐亞板塊沿著馬尼拉海溝向東隱沒至菲律賓海板塊下方(圖一)。這兩個相反卻又糾結的隱沒系統延伸至臺灣,產生巨大的大地應力使得山脈以極快的速度抬升,同時也伴隨著非常頻繁的地震活動。不管從造山的速度、造山的劇烈程度、造山的複雜度以及非常短的造山時間來看,臺灣的造山謎團都足以吸引全球地質學者的目光。

e1

圖一:臺灣板塊構造。

這懸宕數十年的造山謎團隨著各種實驗和觀測佐證,漸漸有了不同的假說:地質學家以力學及運動學為背景的推土機理論為主,配合模擬地表地形及褶皺、斷層型態建立了古典「薄皮理論」,而地球物理學家則由震波速度、重力、和電磁等研究建立了岩石圈碰撞說(又稱為「厚皮理論」,如圖二)。「薄皮」強調地下10 公里處存在向東微傾的滑脫面,地殼受擠壓後,滑脫面上方的物質像被推土機推動般被堆高,或刮起、或褶皺,或者產生大大小小的斷層。整體來說,造山作用只在滑脫面上方;而「厚皮」則認為沒有滑脫面,板塊擠壓產生的變形可以往上堆高形成山脈,並且向下延伸形成「山根」。近十年內隨著計算能力及觀測技術的提升,造山爭議也催生出更細緻的假說。然而這些造山故事雖然都有其根據,卻仍各說各話甚至互相駁斥。

e2

圖二:薄皮理論與厚皮理論運動方式。(作者提供)

突破限制的噪訊法

地震波向來被視為全面檢視地下構造最便利也最有力的工具之一。使用震波研究地下構造的過程和醫學上的電腦斷層掃描非常類似。在本研究中,我們期望利用地震波裡的「表面波」來了解地殼的複雜構造。「表面波」(surface wave)──顧名思義是只在近地表傳遞的波,不同於在地球內部傳遞的P 波及S 波,它可以針對淺層構造提供更好的解析能力。令人遺憾的是:表面波通常只能透過較淺、較大、較遠的地震產生,也因此淺層速度構造在過去的研究結果中可稱得上是盲帶。

2003年,坎皮(Michel Campillo)和保羅(Anne Paul)率先使用新興的震波萃取技術「噪訊法」。理論上,計算兩測站長時間連續噪聲的交互相關函數(cross-correlation function),即可獲取兩站間以表面波為主的震波訊號,而這些噪聲的主要來源為海浪與海床、海岸相互作用產生的振動訊號。「噪訊法」──或可稱為「沒有地震的地震學」,除了免除傳統地震學受到震源的諸多限制外,還帶來了重要的優勢:測站越密,解析度越高。環海且測站密集的臺灣使用噪訊法再適合不過,臺灣的淺層地殼的面紗也終於得以摘下。

e3

圖三:臺灣地形圖與GPS 觀測結果,本研究使用測站以紅色三角形示之(CP:西部平原、WF:西部麓山帶、HR:雪山山脈、CR:中央山脈、LV:花東縱谷、CoR:海岸山脈、EP:歐亞板塊、PSP:菲律賓海板塊)。(作者提供)

透過噪訊法的應用,我們分析全島八十多個測站的地震儀連續雜訊(圖三),包含了中研院地球所、氣象局,以及臺灣大地應力國際整合計畫的寬頻觀測網,從中萃取出上千筆表面波訊號,並於2012 年發佈了臺灣第一個完整的表面波速度模型(圖四)。研究結果顯示淺層的速度分佈和地表觀測到的地質構造非常一致:模型在山脈下方為高速,可反映出在造山過程中曾經被強大應力擠壓夯實後的高密度物質;模型在沿海和盆地區顯示為低速,反映出在地勢低處長久以來的沉積成果,這些沉積岩只受到上覆物質的重力作用,密度遠低於山區的變質岩。這項觀測大幅提升了我們對淺層構造的信心,但地下速度構造和地表地質證據的關聯性究竟向下延伸到多深呢?

e4

圖四:臺灣地殼速度圖與非均向性。顏色代表震波波速,短黑線代表非均向性方向與大小。注意地下9~13 公里為上下層之過渡帶。(註:彩色速度與觀測的結論相同,此處僅展示2015 的研究結果。)(作者提供)

深層的速度模型告訴我們:深逾10 公里以下,山區速度反而變得比周圍慢了。這個答案顯然無法解答我們對造山的未知,因為它提供的意涵恰如造山機制長久存在的分歧一樣使人感到困惑。首先,地表構造的關聯性只延伸至地下10 公里,暗示了造山作用似乎如同「薄皮」所推論,侷限於淺層;然而,深處山脈的低速構造卻又和「厚皮」所強調的「山根」特性相仿。導致這困境的主要原因是──單純的三維震波模型無法告訴我們岩體如何變形,而造山過程中所引發的變形型態及其分佈的範圍卻正是釐清有關臺灣造山兩主要學派爭議的關鍵。為此,我們需要進一步了解震波速度的「非均向性」。

從「非均向性」解析變形方式

「非均向性」是指物質的物理特性(如:熱傳導係數、導電能力、熱膨脹係數,還有波速等)隨方向不同而有所差異。岩石受力產生變形後,地下各種尺度的結構,小至礦物晶體排列、大至斷層產生的不連續面,都有可能造成其彈性性質的非均向性,並反映於與其密切相關的震波速度。因此,震波速度的非均向性可以有效地幫助我們判斷岩體的變形方式及相對應的應力。非均向性包含兩項量化標準:快軸方向及非均向性大小,前者標示出受力後產生變形方式,而後者則暗示著岩石變形的程度。一般來說,地殼非均向性的控制因素相當複雜,產生的變化幅度也很大,快方向速度甚至可比平均速度高出20%。

我們在2015 年發表了第一個臺灣地殼三維非均向性模型(圖四黑色短線)。此模型涵蓋地表至地下50公里,由淺到深逐漸變化,然而,以地下9~13 公里層為過渡帶,上下兩層的快軸方向卻呈現近乎垂直的顯著差異:上層為東北- 西南向(平行山脈走向),下層則轉為西北- 東南向(平行板塊聚合方向)。此結果明白顯示出:臺灣淺層和深處的地殼變形方式並非一致!而造成此變形機制差異的因子為何呢?

我們可從三個方面來看:一、由地質證據中可看出淺層地殼中的構造(如斷層、褶皺軸)和規律性排列的岩理皆平行於臺灣的山脈走向,這些在擠壓應力系統下產生的構造,對淺部地殼平行山脈走向的非均向性貢獻良多。二、深層平行板塊聚合方向的非均向性由截然不同的機制所主導:在中央山脈下方,由於增高的溫度與壓力,使得岩石漸漸失去脆性特質,轉變為較軟且具黏塑特性,與此同時,中下層地殼礦物亦經過分離、再結晶與重新排列,產生了新的紋理,造成近乎垂直於淺層的快方向分佈。三、新的紋理方向揭露造山關鍵:上下層變形方式不同,但之間存在著連動關係。在上層受擠壓隆起形成山脈的同時,地殼下方則是到受歐亞板塊持續向東的隱沒作用牽引,夾在其間的中下部地殼消化了這兩者間的相對運動因而產生剪切變形(圖三),這就是新紋理的形成機制。

臺灣造山機制真相

綜合上面所說,透過地殼速度非均向性的研究,我們提出「耦合分層變形」造山模型。在此模型中,臺灣的造山行為影響深度超過30 公里,但上下層變形方式不同:上層反映順應擠壓產生的構造,下層則是反映下方隱沒板塊施加的剪切變形。

以造山的深度範疇而言,「耦合分層變形」近於薄皮理論,因為只有上層受到擠壓隆起,但其大於30 公里的變形深度卻又符合厚皮的精神。這個新發現彌補了過去因為難以掌握地殼變形而衍生而出的各家造山假說,也更合理地解釋了臺灣山脈抬升快速的原因,同時亦暗示著臺灣山脈還會繼續長高,且相較於造山剛開始時,生長情形將隨著耦合越來越緊密而加速。這項研究不僅對臺灣造山的爭議提供了有力的新證據,同時也為全球造山演化模型加入新的思考方向,是否全球的古老造山帶都曾經經過耦合分層變形的階段呢?相信科學家早已迫不及待在其他地方尋找證據了!

參考資料:
Chen, Y. N. et al., Characteristics of short period secondary microseisms (SPSM) in Taiwan: The influence of shallow ocean strait on SPSM, Geophysical Research Letters, Vol. 38(4), 2011.
Huang, T. Y. et al., Layered deformation in the Taiwan orogeny, Science, Vol. 349(6249):720-723, 2015.
Huang, T. Y.et al., Broad‐band Rayleigh wave tomography of Taiwan and its implications on gravity anomalies, Geophysical Research Letters, Vol. 39(5), 2012.

201510本文選自《科學月刊》2015年10月號

延伸閱讀:
實驗發現了五夸克粒子,真的嗎?
天上掉下來的粒子—從包利到希格斯

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

The post 臺灣造山知多少? 噪訊地震學告訴你--《科學月刊》 appeared first on PanSci 泛科學.

漂流了數億年— 大陸與大洋的起源--《科學月刊》

0
0

吳依璇/臺大海洋所畢業,目前是《滔滔》的編輯。曾經在物理界裡載浮載沉,隨著洋流漂到地質界裡慢慢沉降。

「分久必合,合久必分。」

三國演義裡訴說天下大勢的句子,卻也能用來解釋韋格納提出的大陸漂移學說。

距今一百年前,即1915 年,32 歲的韋格納(Alfred Lothar Wegener)正式出版《大陸與大洋的起源》(The Origin of Continents and Oceans),內容闡述著韋格納發現到的現象,用以支持「大陸是會移動的」的想法。雖然「大陸是會移動的」這個想法被當時大部分的科學家們嗤之以鼻,但也有少部分的科學家們支持著韋格納。而韋格納的後半生為了證實這句話不斷奔走,直至喪命於格陵蘭考察一行中,享年50 歲。韋格納執著於為大陸漂移學說找出任何可能的證據,儘管因此犧牲,但提供了後人最詳盡的描述。

Prof. Dr. Alfred Wegener, ca. 1924-1930

德國氣象學家韋格納。

大陸會漂移?

韋格納雖出版《大陸與大洋的起源》一書,卻不是第一位提出大陸漂移想法的學者。早在1596年,奧特柳斯(Abraham Ortelius)就提出美洲、非洲和歐洲原本可能是合在一起的說法。到了1620 年時,培根(Francis Bacon)也發現大陸與大陸之間的海岸線非常吻合,似乎可以拼起來一樣,但是培根也沒有更進一步的討論,僅止於空想。直到1858 年,佩萊格里尼(Antonio Snider Pellegrini)注意到北美洲與歐洲有著相同的植物化石,於是在他出版的《創造和其祕密的顯露》(The Creation and its Mysteries Unveiled)書中表示所有的大陸於距今約三億年前的石炭紀晚期(賓夕法尼亞期,Pennsylvanian Period)曾聚合在一起,也認為大陸是受到大洪水的影響而移動;於是漸漸地有些科學家開始思考,是否大陸真的會移動呢?

該想法受到了丹納(James Dwight Dana)強烈的抨擊,並在《地質學手冊》(Manual of Geology) 中主張大陸早就有它們原本的輪廓,反對大陸會移動的看法。韶光荏苒,數十年過後,泰勒(Frank Bursley Taylor)於1908 年在美國地質學會(Geological Society of America)上表示,非洲西側的海岸線與南美洲東側的海岸線幾乎可以拼合在一起,並分別在非洲西側和南美洲東側的山脈作了廣泛的研究,於是泰勒認為陸塊會在地球表面上移動,現在的高山則是因為陸塊相互碰撞形成,且原本地球的南北極各有個陸塊,而在白堊紀時,陸塊受到月亮的引力緩緩移向赤道,逐漸形成現今的樣子,但是泰勒的想法慘遭當時科學家的忽略與反對。

接著曼托瓦尼(Robert Mantovani)也在1889 和1909年時發表他的看法,他認為現今的大陸原本曾經是一個很大的陸塊,而這大陸塊覆蓋了整個地球,當時的地球比現在還來得小一些,直到火山活動使得地球因熱膨脹造成大陸塊分裂,海洋隨之形成,地球表面漸漸變成現今的樣貌。

1911 和1928 年,貝克(Howard Baker)將現今各大陸重建成一個大陸塊,並提出是金星接近地球時的引力提供動力使大陸塊分裂。在今日看來,雖然這些科學家提出的大陸漂移機制並不合理,但是他們種下「大陸不是靜止不動,也非各自獨立不相干的存在」之種子,等著讓後人將這想法發揚光大。

02

不被接受的學說

在泰勒發表論文的幾年後,韋格納也注意到大陸之間似乎可以「拼」在一起。1912 年1 月,韋格納在德國地質學會上發表並支持「大陸漂移」的概念,震驚了許多科學家。

在韋格納提出論文之前,科學家們一般認為地球是由熔融的狀態漸漸冷卻收縮形成現今的樣貌;在這個過程中,比較重的元素,例如鐵,慢慢沉入地球內部;比較輕的元素,例如矽和鋁,則慢慢浮到地球表面。地球慢慢冷卻收縮的時候,地球表面也如同乾癟的蘋果一般出現了皺紋,這也就是現今山脈形成的原因;相較於在收縮時壓力比較大的地區,部分地表則陷落形成海盆。隨著時間推移,陸地和海洋的位置也會漸漸改變,這是因為有些陸地陷落得較周圍陸地區域快速,形成了海洋,也使原本為海洋的地區被擠壓成陸地。

除了陸地和海洋的形成原因以外,科學家們認為在大洋兩側的陸地會發現到有相類似甚至是一樣的植物和動物化石,是因為大陸之間曾有條陸橋可以連接,動物們就可以藉這條陸橋來往於兩大陸,只是最後這條陸橋沉入海底。科學家們也在地層紀錄裡看到海水向著陸地「海進」與遠離陸地的「海退」,海進與海退的現象被認為分別是陸地的沉積物逐漸填滿海洋盆地與海洋盆地陷落而形成。

然而,韋格納發現了許多與「地球收縮理論」相矛盾或無法解釋的現象,而這些現象支持大陸漂移說。例如,韋格納發現如果將大西洋兩岸的非洲和南美洲拼在一起時,非洲西側和南美洲東側大陸棚裂的分布位置非常吻合;全世界的山脈分布大多呈曲線形,如果山脈是因為地球收縮而形成的,那麼山脈的分布應該是像顆乾癟蘋果上的皺紋一般隨機分布才合理。在韋格納測量全球地表的地形起伏時,包括山有多高與海有多深,發現地形起伏的高度分布出現兩個峰值,若是依照地球收縮理論,地形起伏的高度分布應該會比較傾向於常態分布。韋格納認為這是因為地殼主要由兩層不同密度的岩石所組成,密度較小的花崗岩會在上層、形成陸地;密度較大的玄武岩則在下層、形成海床。

韋格納身為一位氣象學家,其中一項能使他深切相信南美洲與非洲曾經合併在一起的證據就是古氣候的指標;他在重建古老的大陸塊時,將在不同大陸上所發現的冰川、熱帶雨林和沙漠等氣候所形成的沉積物重新分布在相近的位置上,最後,韋格納按照這些方法拼出一塊大陸塊來。例如韋格納彙整了南美洲、非洲、澳洲、印度和南極洲上古冰川留下的痕跡,用以指示當初冰川流動的方向,發現這些陸地可以被拼湊成一塊大陸塊,且冰川由此大陸塊中心向四面八方流動;但是現在南美洲、非洲、澳洲、印度這些地方都不太有冰川活動,所以當初這些小陸塊可能是曾經位處南極地區的大陸塊分裂而成。種種發現都讓韋格納相信大陸不只會漂移,而且現今的各大陸應該是由一塊超級大的大陸塊分裂而成,並且在1915 年出版的《大陸與大洋的起源》一書中詳細描述大陸漂移的構想。

分久必合,合久必分

韋格納在《大陸與大洋的起源》中,結合了所發現的各項資料,最終描繪出來的大陸塊被命名為盤古大陸(Pangaea或Pangea),這個名字也代表著「全陸地」的意思。

03

儘管韋格納提出曾經有超大陸存在的證據相當有力,但他卻沒有辦法合理解釋大陸漂移的動力機制。他當時提出是天體引潮力和地球自轉所產生的離心力作用下,使原本一塊很大的陸塊破裂成許多小的陸塊,反對者指出這些作用力太小,不足以移動整個大陸橫跨海洋,地球物理學家杰弗里斯(Harold Jeffries)曾假設潮汐能夠克服海床造成的摩擦力來推動大陸,使大陸漸漸的移動,按照計算的結果,地球將在一年後停止轉動;更何況韋格納計算出大陸漂移的速率約是每年250 公分(現今美洲相對於歐洲和非洲的分離速率約是每年2.5 公分),想當然爾,其他科學家根本不接受大陸移動的速率是如此地快,也連帶地不接受韋格納提出的大陸漂移說。

光陰似箭,歲月如梭,至今大陸漂移說也漸漸發展成板塊構造學說,科學家們也相信在約距今3 億年前地球上有個盤古大陸的存在。這塊盤古大陸也就如同韋格納所相信地那樣,約在1 億7 千5 百萬年前開始分裂。和現今的大陸分布大為不同的是,盤古大陸大部分都集中於南半球,並由一超級大洋包圍著,這片超級大洋稱之為泛大洋或盤古大洋(Panthalassa)。

在盤古大陸分裂後,形成兩大陸塊,一塊漸漸向南邊移動的是岡瓦那大陸(Gondwana);另一塊漸漸朝北邊移動的是勞亞大陸(Laurasia)。向南邊移動的岡瓦那大陸後來又再分裂成南美、非洲、印度、澳洲和南極洲等小陸塊;向北邊移動的勞亞大陸則漸漸分裂成北美、非洲和歐亞大陸等小陸塊。盤古大陸是目前地球歷史上最後一塊超級大陸,但大陸仍舊不斷地漂移,估計未來會形成終極盤古大陸。

04a

結語

雖然韋格納的大陸漂移說在當年飽受抨擊,他的研究也因其在1929 年第三次格陵蘭考察中喪生戛然而止,然而到1950 年代中期至60 年代以後,隨著古地磁學、海底測勘的技術發展,科學家們奠基於韋格納在百年前的研究成果,發展出現今的板塊構造學說;以現在科學的發展,應是當年強烈反駁大陸漂移說的科學家們始料未及的結果,也印證叔本華所說:「所有真理都會經過三個階段:人們先認為是可笑的,再強烈反對,最後才會接受它是不證自明的。」

201510〈本文選自《科學月刊》2015年10月號〉

延伸閱讀:
寂靜的山頭是否即將復活?
臺灣造山知多少?噪訊地震學告訴你

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

 

The post 漂流了數億年— 大陸與大洋的起源--《科學月刊》 appeared first on PanSci 泛科學.

體循環與肺循環為何非要這樣連不可?--《科學月刊》

0
0

陳妙嫻/畢業於臺大教育學程;任教於板橋高中;加入思辨教學團隊後,才發現竟然可以對著生物課本問出這麼多的問題,非常開心。

「左心室、主動脈、小動脈、微血管、小靜脈、右心房……」你或許曾為了應付考試背誦過這段文字,但可能從沒想過血管、心臟、所有器官為什麼非得這樣接。

「左心室、主動脈、小動脈、微血管、小靜脈、右心房⋯⋯」即使是將近二十年前的事情了,我還記得當初上生物課時,老師要全班一起朗誦三次、好加強記憶的情景。體循環、肺循環是中學生物課程的重點,也是學生最頭痛的地方之一。看看那張複雜的路線圖,還真不知道該從哪個構造認識起呢!本文要挑戰學生們老是抱怨「生物有好多要死背」的刻板印象,以理解和推理的方式,輕鬆地認識複雜的血管線路!

6216013369_7d8de01d3b_o

人體循環系統。 Source: flickr

血管和器官為什麼這麼相連

你一定很熟悉這樣的考題:若護士從手臂靜脈注射藥物,循環至發炎處會經過哪些血管?然後賭氣地想,從手臂長一根血管通到發炎處不是很好嗎?為何要繞來繞去?這是一個非常好的反問──血管和器官之間為什麼要這樣相連?

循環是以心臟搏動為動力、血管為通路、血液為載體,將細胞所需的養分和氧氣送到器官。器官相連的直接想法,就是心臟將血液打出來後,先到第一個器官,再到第二個器官、第三個⋯⋯這樣不是很簡單嗎?

但是這個安排不太理想。第一,排在前面的器官比較幸運,可以獲得比較多的養分或氧氣;而後面的器官,甚至還會「吃到」前面排放的廢物!第二,這種線路有個致命的危險,只要一個地方斷掉,就全部完蛋了!第三,進入器官之後,血管會分支成更多的微血管,此時血壓下降、血流變慢。若血液要再流到下一個器官,恐怕會有血壓不足的問題。

器官一個接一個的相連方法,稱作「串聯」。若器官以「並聯」的方式相連,就可以解決上述問題。這就是為什麼從血液從心臟打出來之後,要經過「主動脈、小動脈、微血管、小靜脈、右心房⋯⋯」,這個過程稱作「體循環」。若考慮到人類體型的限制,並聯的方式會有一些變形。離開主動脈後,先分成四個分支;其中三個分支往上至頭、頸、上肢,最後一個分支往下到軀幹、下肢;而各個分支到該器官部位時,再分支成較小動脈進入器官內。

2000px-Resistors_in_parallel.svg

如果單純把每個器官當作電阻的話,心臟是電池而血液是電流。若器官從「串聯」改成「並聯」的方式,則所有器官會獲得相同的血壓,且「等效電阻」將會變小,血液的流速將會加快,但這樣你的心臟所負擔的功率也會大增!圖為並聯電路。Source: wiki

引入特別的器官—肺

從全身器官回流的血液,應該缺少氧氣和富含二氧化碳。此時考慮引進肺這個器官,將氧氣加入血液中,且排出二氧化碳。肺臟也與其他器官並聯,這樣好嗎?

並聯會使得肺臟每次只能清除少部分的血液,而當充氧血從肺臟流出時,卻必須跟其他器官的少氧血混在一起。因此,若將肺臟放在大靜脈的位置,似乎能解決上述問題。也就是說,讓肺臟跟其他器官串聯,但如此一來,又有串聯產生的問題。然而在肺臟並不存在第一、二個問題,真正有困難的是血壓不足。那麼,就在肺臟前面再加一個幫浦,推動血液。

可是人並沒有兩個心臟啊?其實我們雖然只有一個心臟,卻可說具有兩個幫浦!這兩個幫浦就是人類心臟中的左心和右心。當心臟收縮時,充氧血從左心打出,流經體循環,少氧血再流回右心;而同時間,少氧血從右心打出,流經肺臟加氧、排除二氧化碳,充氧血流回左心,如此循環不已。

小腸和腎臟該怎麼與其他器官相連

除了肺臟是特殊的器官外,小腸和腎臟也與身體的代謝有關。前者負責將養分(如葡萄糖)加入血液中,後者負責將含氮廢物排出體外。那麼,小腸和腎臟該怎麼與器官相連呢?

在思考小腸和腎臟的位置時,先回溯肺臟的情況。肺臟的功能為加氧氣和排除二氧化碳,前者與小腸的吸收養分功能相當,後者則與腎臟排除含氮廢物類似。我們以兩個理由排除了並聯的可能。第一,從肺臟出來的充氧血,流至靜脈時,會與少氧血混合;第二,每次只能排出身體部分的二氧化碳,效率較差。

我們將第一個理由套用到小腸中──從小腸出來的血液,充滿了各種養分,如葡萄糖;而流至靜脈時,會跟缺乏養分的血液混合,但這樣的混合到底有什麼問題?混合的結果是使該溶質的濃度下降,但是該物質的莫耳數(或顆粒數)並沒有減少。也就是說,使用並聯的方式來加氧或養分,都不會影響身體獲得氧或養分的「量」。所以說,小腸和其他器官是並聯就可以了,這樣還能避免血壓或其他串聯的問題。

不過,這麼反駁不是自己打自己的臉了嗎?文章前頭還振振有詞地說明肺臟必須串聯的理由。身體還因此多了一個幫浦(右心),為的就是要解決血壓的問題。看看小腸的例子,似乎也不需要嘛。

但仔細想想,氧氣和養分的情況其實並不相同。氧氣從肺泡至肺泡微血管、組織微血管和組織細胞間的交換,是以擴散的方式進行。而擴散的快慢與兩側氧分壓的差異有關,差異越大,擴散速率越快。因此,在並聯的情形下,充氧血與少氧血混合後又再循環至肺,會減少微血管和肺泡間的分壓差異,使氧氣擴散的速率下降。而全身器官也有相同情形。另外,由於氧氣對水的溶解度很低,人體以血紅素來運輸氧氣。然而血紅素與氧氣的結合率,與氧分壓的高低有關,當氧分壓上升時,血紅素與氧氣的結合率也會上升;因此,若充氧血和少氧血混合時,也可能造成氧合血紅素釋出氧氣,使氧氣的運輸量減少。

小腸上皮細胞是以主動運輸的方式吸收葡萄糖,因此吸收速率無關乎兩側的濃度差異。再者,身體中有嚴密控制血糖含量的機制。當血糖過低或過高時,可藉由肝醣的分解或合成來調控,因此「充養血」和「少養血」混合,造成的問題似乎沒有那麼嚴重。

在消化系統的循環中,另外有個有趣的部分。也就是「肝門循環」中,從小腸離開的靜脈,並沒有直接匯集到下大靜脈,而是由肝門靜脈進入肝臟。也就是說,小腸與肝臟串聯!

為什麼小腸要與肝臟串聯呢?方才提到血糖的調節與肝臟有關,因此由小腸吸收的葡萄糖,先送到肝臟儲存,以維持血糖的恆定;另外,肝臟有解毒和代謝的功能,由消化器官吸收的有害物質,會先送到肝臟去解毒;而胺基酸也會送至肝臟,作為製造血漿蛋白的原料。肝臟等於是消化系統的後端處理器官,在消化道分解後的養分,先送至肝臟做初步的處理,能藉此調節養分在血液中的含量。

那麼,有關串聯的困難又怎麼解決呢?肝臟就在小腸之後,自然沒有得不到養分的問題。肝臟有自己的肝動脈,可送來充足的氧氣;而血管內的平滑肌若接受神經或激素的影響,也可調節局部血壓,使血流推進至肝臟的微血管。

如果血管可藉由平滑肌收縮調整局部血壓,使得器官彼此之間可以串聯,那麼前面為什麼又說器官必須彼此並聯呢?可能的原因是,大規模的局部血壓調節可能較為複雜,雖然還是辦得到,卻不如並聯來得容易。而且串聯的其他問題──後面的器官無法獲得充足的養分和氧氣、後面的器官「吃到」前頭的廢物、一個地方斷掉就全數完蛋,依舊無法解決。若以體循環之並聯為架構,可以一次解決所有問題。而若有特殊的需求或功能,局部器官串聯也並非完全不可能。

肺臟為何非串聯不可

既然一個器官的血壓問題可以由靠血管解決,那麼肺臟為什麼不行?之前提過,除了血壓不足外,肺臟並沒有其他因串聯引伸出來的問題。

或許可以從以下現象獲得啟示:在脊椎動物中,呼吸器官與其他器官的串聯關係,從魚類就存在了。而魚的心臟只有一個幫浦在鰓之前,從鰓流出的血液接下來會流向全身器官(體循環);但是在流向體循環前,並沒有流回心臟再度加壓,這樣的循環稱之為單環。不過在某些魚類中,體循環之前有由動脈特化而來的「輔助心臟」,以幫助血液流入身體的器官,但輔助心臟的收縮能力沒有心臟那麼強。由這個現象可知,鰓的循環對血壓的要求高於身體其他器官,後來脊椎動物登陸後才逐漸扭轉。至於為什麼鰓需要較高的血壓,有可能是因為呼吸器官為了增加氣體交換的速率,因此有廣大的表面積,因而具規模較其他器官大的微血管網,需要較大的推動力。另外,陸生脊椎動物要將來自全身器官的血液推送至肺,和僅來自小腸的血液推送至肝臟相比,兩者的血量應該有滿大的差距,所需的推動力也不一樣。

總而言之,肺臟之所以要串聯的原因,主要可能是交換和運輸氧氣的限制;而串聯又會造成血壓不足的問題,並且無法用動脈解決,則必須使用比動脈更強而有力的心臟推動。

腎臟也是體循環的一支

若腎臟與其他器官並聯,那麼每次循環都只能排除部份的含氮廢物,效率不彰。因此要以串聯才能解決。不過,就人體的構造來看,腎臟僅是體循環的一支,與其他器官並聯。

較有可能的原因是,在魚類中,排泄含氮廢物的器官主要是鰓,腎的功能則與水份和鹽類的恆定有關。若是考慮到滲透壓的恆定,其實沒有串聯的必要。因此,腎臟的並聯可能是演化的痕跡。再者,前面的討論發現串聯造成的問題較多,而肺臟從魚類開始就已經與其他器官串聯。可由此推測氧氣的取得造成的演化壓力較大,而丟棄含氮廢物的效率,對生存的影響沒有大到非串聯不可的程度。

不過脊椎動物登陸後,丟棄含氮廢物的壓力就增加了。因為環境中缺乏水分,廢物必須在體內暫存一段時間才能丟棄。也無法像魚類一樣,直接靠呼吸器官擴散。但此時腎臟已經與器官並聯,因為這個「歷史共業」,登陸後的脊椎動物將氨轉變成尿素或尿酸,讓毒性降低,彌補效率不彰造成的毒性問題。

學習科學的方法

本文示範了一種學習科學的方法,也就是──對現象問問題、提出可能的看法、反駁、再提出可能的理由、再反駁⋯⋯直到獲得到暫時的答案為止。學習科學時,重要的是要成為主動的思考者,而非被動的接受者;才能以理解代替死背,從諸多生物學細節中理出一種「看的方法」。而這個看的方法,其實是達爾文催生現代生物學的關鍵──演化。

備註: 本文依照人本創新教學專案小組教案〈血液循環之道〉施行。

2015-02-cover〈本文選自《科學月刊》2015年2月號〉

延伸閱讀:
體內的推理
中樞神經系統中的淋巴管

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

The post 體循環與肺循環為何非要這樣連不可?--《科學月刊》 appeared first on PanSci 泛科學.

科學期刊大PK--《科學月刊》

0
0

俞震亞/美國密西根大學安娜堡校區神經科學博士,專長為發育生物學,目前任教於陽明大學生命科學系。
王慈蔚/美國密西根大學安娜堡校區神經科學博士,專長為神經發育,目前任教於臺灣師範大學生命科學系。

選擇科學期刊,要比的是Impact Factor 還是期刊編輯的學術水準?

Impact factor?

相信很多人都知道ScienceNatureCell這些頂尖的科學期刊,但是它們到底好在哪裡?最簡單的答案就是,這些期刊的Impact Factor(IF)很高:Nature 的IF 是42.351,而Cell的IF 則是33.116。所謂IF,就是科學論文被其他科學論文引用的次數,越重要的論文,被引用的次數就越多。想當然爾,所有的研究人員,都會希望自己的論文可以發表在高IF的期刊。想要有高IF 論文發表,首先要瞭解科學論文審查的遊戲規則。

IMP1

期刊引用報告,研究者的必經之地。

科學期刊的審查機制

第一步,當然要有重要有趣的問題與實驗結果。將成果彙整、嚴謹且精確地寫成一篇圖文並茂的科學論文後,就要開始過關斬將了!

這些科學論文的稿件,會先由科學期刊的編輯(editor)負責第一輪篩選。他們依據自己的專業能力,判斷這些論文是否有創新性、重大發現,以及是否適合該期刊的領域。如果過了編輯的第一關,他們會依據論文的領域,將之送給適合的2到3位審稿人(reviewer)審查。這些審稿人是與該論文類似領域的研究人員,他們會嚴謹地檢視論文的實驗流程與結果,判斷其結果的重要性與創新程度;同時找出缺點與該補做的實驗,並對於期刊是否接受該論文做初步的判定。期刊的編輯會彙整審稿人的意見,判決這篇論文的命運,可能的命運通常有以下三種:

一、期刊願意接受並發表這篇論文。

 

二、期刊不願意發表這篇論文。

 

三、請論文的作者們根據審稿人的意見,補做實驗以及改進論述。論文作者通常會從善如流,把改善後的稿件送回給編輯。由編輯再一次判斷經過修改後的論文,是否已符合標準,做出接受或拒絕刊登的決定。

如果期刊編輯的最終判決是拒絕發表這篇論文,作者就只好把論文送去下一個IF比較低的科學期刊,再接再厲了!

這個行之有年的科學論文審查系統,是否有瑕疵與漏洞呢?當然有,前一陣子鬧得沸沸揚揚的陳氏兄弟案件,就是一個最好的案例,不過這不是本篇要討論的問題。

是誰決定論文的生殺大權?

仔細檢視科學論文的審查過程,可以想想決定生殺大權的,到底是審稿人還是科學期刊的編輯?在有些情況下,審稿人的意見舉足輕重;但是如果這篇稿件不是完美無缺到大家搶著要,或是真的慘不忍睹,而是落在中間地帶,那麼刊登與否的決定,就是掌握在編輯的手裡。更何況在第一關決定論文是否適合該期刊的領域,第二關決定要找哪幾位審稿人;審查完畢後審稿人的意見是否該採納、審稿人建議補做的實驗是否合理;以及判斷修改後的論文是否適合刊登,都是期刊編輯的責任。因此,科學期刊編輯所掌握的權力實在不容小覷。

對於研究人員來說,論文發表於高IF的期刊,可以讓論文有較高的曝光機會,也比較容易獲得研究經費的補助;獲得經費資助,就能推動下一階段研究的進行。論文發表與研究經費取得如雞生蛋、蛋生雞般不斷地循環。近年來由於科學研究經費縮減,研究人員無不卯足了勁努力做實驗,期待自己的科學論文有朝一日發表在高IF 的期刊上,讓研究能順利發展。此外,好的論文發表也有助於研究人員的升遷。因此,高IF的期刊接到如雪片般湧入的科學論文稿件,這些期刊的編輯們也更可以精挑細選。以結果來看,這些期刊的編輯不僅影響科學論文的發表,其實更決定了整個科學研究的方向。到底是怎麼樣的科學菁英,可以擔負此重責大任呢?

NatureCell等科學期刊,都是採專業編輯的制度。這些專業編輯,大多是博士畢業後幾年,就投身科學編輯工作。他們年紀並不大,科學研究的資歷也不深厚。而有些IF沒那麼高的期刊編輯,則由該領域學有專精的資深研究者擔任。到底該由專業編輯或資深研究者來決定科學研究的走向,是個值得思考的問題。

h-index-讓你知道編輯資歷

2015年,Genetics期刊的主編約翰斯頓(Mark Johnston) 寫了一篇評論,對專業編輯的制度提出了省思。Genetics 是由美國遺傳學會(The Genetics Society of America, GSA)於1916年創立的老牌科學期刊,該期刊所有的編輯都是學有專精的遺傳學界大師們兼任。跟NatureCell的專業編輯比起來,他們應該更有能力與資格判斷科學論文的發表。但有趣的是,Genetics的IF卻只有4.866,讓主編約翰斯頓吶喊:這公平嗎?

約翰斯頓用一個方法來凸顯Genetics編輯的能力與成就。2005年,美國加州大學聖地牙哥分校的物理系教授赫希(Jorge Hirsch)提出了一個量化方式,稱為h-index。所謂h-index,就是把一位科學家所發表的科學論文,按照被引用的次數由高到低排序;假設排第10的論文被引用11次,排第11的論文只被引用8次,則這位研究人員有10篇論文被引用10次以上,他的h-index就是10。也就是說,一定要發表的論文數量多,被引用的次數也要多,h-index才會高。約翰斯頓做了一個統計:Genetics編輯群平均的h-index是45.3,Nature是6.5,Cell則是5.7。一比之下Genetics完勝!既然科學期刊的編輯責任重大,約翰斯頓認為在判斷科學期刊的優劣時,編輯的學術成就應該是一項比IF更重要的指標。研究人員應該選擇編輯學術成就較高的期刊投稿,而不是IF 較高的期刊。

擁抱創新與專業判斷

在這個年代,研究人員為了證明自己的能力與成就,常常被IF 牽著鼻子走;心甘情願讓一些研究資歷不深厚的專業編輯,而不是學有專精的資深研究人員,來控制頂級科學論文的生殺大權與科學研究的發展方向,聽起來的確不太合理。不過,我們也不應該一昧地講求經驗至上。最近臺灣的學術界也在反省,是否應該把更多的研究資源,分配給新進的研究人員;因為資深的大師們可能無法持續掌握科學發展的最新脈動,年輕人也許會有更好的洞見。從這樣的角度來看,也許NatureCell採用專業編輯制,是期待他們能把科學發展指引到更創新的方向。由資深研究人員擔任編輯,在決定審稿人的意見是否該採納,以及審稿人建議補做的實驗是否合理等部分,應該比較合宜;而在判斷論文的重要性與新穎性,則是資深研究人員與專業編輯各擅勝場。但獨尊任何一個單一指標並被其左右,應該是科學界不樂見且該深刻反省的。

參考資料:

  1. Johnston, M., A glaring paradox, Genetics, Vol. 199: 637-638, 2015.
  2. Hirsch, J. E., An index to quantify an individual’s scientific research output, PNAS, Vol. 102: 16569-16572, 2005.

2015-05-cover(本文選自《科學月刊》2015年5月號)

延伸閱讀:
從陳震遠事件看學術界
山寨期刊賺大錢

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

The post 科學期刊大PK--《科學月刊》 appeared first on PanSci 泛科學.

在實驗中找回好奇心的癌症醫師:陽明大學臨醫所教授楊慕華專訪--《科學月刊》

0
0

趙軒翎/科學月刊主編。陽明大學生命科學系畢業,從生科領域叛逃後,現在是科學傳播領域的小小兵,努力磨練兵器和戰鬥力。

光是今(2015)年,陽明大學臨床醫學研究所教授楊慕華就獲得兩個獎項的肯定,包括「有庠科技論文獎」和「徐千田癌症研究傑出獎」,其中有庠科技論文獎得獎理由讚揚他的研究「在觀念上提供了突破性見解」、「研究成果自基礎及醫藥科學觀點來看皆極重要」。他同時也是臺北榮民總醫院腫瘤醫學部醫師,但在他身上看不到大教授、大醫師的架子,而是個笑瞇瞇、親切和謙沖的學者。

Cystodiniumsp_02

楊慕華教授(林郁鈞攝影)

用努力補不足 市場買豬皮練縫針

家中三個男生,楊慕華是最小的那一個,和大哥差了6 歲、和二哥差4 歲,從小被兩個哥哥帶著念書、盯著考試成績長大。楊慕華形容求學時的自己就是一個很認真念書的學生,往往也能拿到不錯的成績,但是到了進入醫學系後才遭遇到讀書的困境。「剛開始的時候覺得適應不良,不知道怎麼從那麼厚的書中快速吸收。」面對醫學系厚重的原文書、繁重的課業壓力和緊鑼密鼓的考試,楊慕華說當時的自己念得非常吃力和挫折。「這些東西就算很認真,也不像高中會有念完的一天。」

除此之外,楊慕華也發現自己的雙手非常不靈巧。他回憶醫學系五年級時的外科實驗課時,同學們輪流幫狗開刀,同學們大多都能順利完成手術,但只要輪到他往往都不是很順利,讓所屬的小組拿到低分,也引發同學的不悅。「不要給楊慕華開刀!只要換他開刀,狗就會死!」類似的狀況也發生在他到外科實習的時候,他說老師也曾當面訓斥:「你到底有什麼問題,怎麼會手這麼笨!」即使一次一次受挫、氣惱,楊慕華並沒有因此放棄,為了克服手的障礙,他跑到傳統市場買了一塊豬皮,一針一線反覆練習縫傷口的技巧。他抱持著勤能補拙的心態,告訴自己即使無法做到出眾,但至少可以做到不比別人差。

近三十歲才遇上出軌的青春期

在結束七年的醫學教育訓練後,楊慕華申請成為臺北榮總內科部的住院醫師,然而這卻只是排除了沒有把握的外科後的選擇,他內心還沒想好未來的路。內科部又可細分為八科,要訓練三年後才會分科,對楊慕華來說做決定的時間又可以再延後三年。在內科住院醫師訓練時,他都能很順利完成分內的工作,不管是記憶各種臨床資訊、閱讀文獻和口頭報告都難不倒他,似乎是找到了合適的歸屬。

「我從小到大好像都在所謂的『正軌』上,從來沒有做過一件事情是出乎別人意料之外。」

即使楊慕華知道自己能夠勝任內科醫師的工作,但要順著這條路很平順的走下去做一輩子,心裡卻產生了抗拒。「因為成績好就念醫學系,不知道選什麼科別就選內科,卻不曉得自己真正想要做什麼。」楊慕華當時對於未來的徬徨和掙扎,讓他在內科擔任住院醫師時,兩度決定跨出自己熟悉的領域去重新考精神科住院醫師。第一次去考,他說他只是想證明自己也有這個能力,去做與眾不同的選擇;到了第二次考上,他差點要毅然決然放棄已經進行兩年的內科住院醫師訓練,到精神科重新開始。「我覺得我的青春期那時候才開始,還蠻激烈的。」與身旁親友討論,加上審慎思考了一個禮拜,他才全然放棄轉到精神科的想法。

這段「青春期」的掙扎告一個段落,在內科部中楊慕華最後選擇了血液腫瘤科。這也是當時1999 年左右比較少人選擇的科別,因為癌症還沒有太多的治療方式,常面對狀況很差的臨終病患,在他做這決定之前已經兩三年沒有醫師願意選擇這個科別,他笑了笑說:「這個決定也算是安慰自己無法選擇很特別的精神科吧。」

走入基礎研究 科學是興趣也是志業

2002 年楊慕華在血液腫瘤科升到主治醫師後,主要醫治頭頸癌的病患。在醫院的鼓勵之下,他決定再回到學校充實自己,隔年九月他開始在陽明大學臨床醫學研究所就讀博士班,由生化暨分子生物研究所教授吳國瑞指導。楊慕華對於吳國瑞教授非常崇敬,「他的思路總是比我們快很多!」而吳國瑞教授對於科學研究一絲不苟、精確、細心的態度,不僅對自己嚴格,也對學生同樣嚴格要求。楊慕華說,他最感謝的就是吳國瑞教授從未因他是醫師,得醫院、實驗室兩邊奔波,對他的要求就較為寬鬆。「若不是他,我沒辦法得到這麼扎實的訓練!」

博士班扎實訓練的背後不只是老師的督促,更是楊慕華自己對自己的要求,讓他能從無到有打下做實驗的基礎。「在這之前我對實驗的概念是零!」進入博士班之前,他是幾乎沒有實驗經驗的新手,還得克服雙手不靈巧、實驗做不好的種種考驗。他跟著碩士班新生一起從最基本的實驗訓練開始,包含學習培養細胞、抽DNA、跑電泳等技術,慢慢一次一次磨練自己。他一段時間就給自己訂一個目標,將自己的程度從什麼都不會,到漸漸能和一般的碩士、博士生相同。

e7d4899c79a011c961822d91807a2b7d_550_367

楊慕華與實驗室學生感情相當好。(楊慕華實驗室提供)

博士班這三年,即使還是在看診,但楊慕華待在實驗室的時間不亞於一般學生。他每天一早到醫院巡完病房,十點左右到實驗室開始一整天的實驗,晚上回家吃完飯後又再回實驗室,直到晚上十點左右才與剛下診的牙醫師妻子一同到保母家,接回還不滿一歲的小孩。哄小孩睡覺後,他則繼續挑燈夜戰閱讀文獻直到三點,才算是結束一整天的行程。

「我覺得我跟以前不一樣了,我找到一個確定的目標想要達成,我知道自己在做什麼。」

楊慕華在癌症的基礎研究中,找到不曾被激發出的動力,他說做科學完全是興趣,不僅開心也不會疲累。

「如果我只能做一個工作,那一定是科學。」

找回好奇心的醫師

2006 年楊慕華順利取得博士學位,2007 年他將在吳國瑞教授實驗室做的一部份研究結果整理投稿,2008 年這篇論文順利刊登於《自然:細胞生物學》(Nature Cell Biology)期刊。這篇研究深入探討他每天都在治療的頭頸癌,在分子機制上是如何轉移。當頭頸癌局部快速生長時,因為癌細胞無法得到充分的氧氣,會促使兩種基因活化,一為HIF-1 缺氧基因,另為TWIST Snail 這種與癌症轉移相關的基因,進而使癌細胞容易轉移到其他器官,造成癌症難以根治。而後楊慕華在臨醫所建立起自己的實驗室,承襲他在吳國瑞教授實驗室的經驗,順利在2010 和2012 年各分別發表一篇論文在《自然:細胞生物學》期刊,進一步了解癌症轉移過程中分子機制的調控,如何造成頭頸癌的高侵犯性和臨床上預後差的現象,也提供頭頸癌治療新的方針。

images

2015年楊慕華與研究團隊的論文獲有庠科技論文獎的肯定,圖為楊慕華(右)與論文第一作者陽明 臨醫所博士後研究員許信賢(左)合照。(國立陽明大學提供)

楊慕華實驗室近年來陸續發表多篇相當出色的研究,也吸引許多媒體的關注與報導,他則謙虛地說自己只是運氣很好,再加上臨床上的經驗帶來幫助。他說,每天在看癌症病患,了解癌症真正發生在人身上的狀況,讓他更容易掌握研究方向。

「我會做那些發生在人身上,但目前還無法解釋的狀況,較不會去做那些只發生在實驗室,但沒有在人身上發生的事情。」

他形容醫學和臨床的訓練讓醫師腦袋像是一個資料庫,很容易將看到的現象與疾病連結起來,並且能夠判斷實驗結果在真實生理狀態上的合理性。他舉例來說,癌細胞在血管裡受一定大小的力,會使得癌細胞釋出某種訊號,造成形變而使癌細胞轉移出血管。若實驗上的結果發現這個大小的力只會在大血管出現,但癌細胞根本無法在大血管中形變與轉移,那麼這樣的實驗結果將沒有任何生理上的意義。

post-152-1118308002

2011年楊慕華獲第六屆李天德醫藥科技獎之青年科學家獎,由時任行政院長吳敦義頒獎。(永信李天德醫藥基金會提供)

比較醫學與科學,楊慕華認為最不同的是對事情的「好奇心」。「醫學沒有辦法問為什麼的東西太多了,久而久之會忘了怎麼問。」他說,醫師大多都非常優秀,記憶力都非常好,但在做科學時「好奇心和熱情反而比優秀來的重要」,需要的是對研究的興趣,以及打破砂鍋問到底的精神。他很鼓勵學生成為醫師科學家,但也建議醫學生可以早一點接觸科學研究,「像我一樣博士班才接觸實驗真的太晚了!」

尾聲

「我在陽明很久很久了,」楊慕華說,「從1987 年到現在已經20 幾年了。」

楊慕華細數著陽明大學的變化,以前在山下的操場,已經搬到山上,也蓋了許多新的建築物。楊慕華的實驗室位於半山腰的研究大樓,他屈指數了數實驗室目前的人數說:「大概16、7 個吧,其實還蠻多的。」他笑著說,實驗室感情很不錯,學生們即使念完碩士、博士還是願意再留下來做助理或做博士後研究。「前幾年進來的碩一新生,看到這麼多經驗豐富的學長姐,壓力都很大,但很快的就能在這些資深學長姐的帶領下獨立作業。」不過,他也提到最初建立實驗室收的第一批學生、助理漸漸也要離開了,即使有些不捨,但也是必經的過程。

楊慕華在實驗中找回了對於科學的好奇心,在陽明以及榮總,他帶著一批又一批的研究生、醫學生、新進醫師,他期盼能在更多學生的好奇心消失之前,灑下科學的種子,到某個時刻能夠發芽、茁壯。

楊慕華

  • 現職:
    國立陽明大學臨床醫學研究所教授
    臺北榮民總醫院腫瘤醫學部藥物治療科主任、主治醫師
  • 經歷:
    國立陽明大學臨床醫學研究所博士
    國立陽明大學醫學系醫學士
  • 榮譽:
    2015 年
    第13 屆有庠科技論文獎生技醫藥類
    徐千田癌症研究傑出獎
    2012 年 國科會傑出研究獎
    2011 年 中研院年輕學者研究著作獎生命科學組
  • 研究領域:
    癌症轉移的分子機制、頭頸癌臨床研究

2

〈本文選自《科學月刊》2015年12月號〉

延伸閱讀:
拓樸酶現形抗癌藥改良根基—臺大醫學院生化所詹迺立教授專訪

用科學態度與方法解開法醫神秘面紗

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以當個科青

 

 

 

 

 

The post 在實驗中找回好奇心的癌症醫師:陽明大學臨醫所教授楊慕華專訪--《科學月刊》 appeared first on PanSci 泛科學.

氣候變遷動物可跑,植物怎麼辦?——《科學月刊》

0
0

蘇世顥/任職於文化大學大氣科學系。主要研究各種大氣物理現象,對於各種天氣與氣候問題都抱持高度的興趣。
蘇世珩/任職於美國威斯康辛州立大學麥迪遜分校遺傳學系。主修植物遺傳育種,喜歡植物與其生長環境間的交互作用的議題。
林博雄/任職於臺灣大學大氣科學系。主授「大氣測計」,開設「生物氣象」和「航空氣象」選修課,喜愛環境生態與氣象的跨領域研究議題。

Cystodiniumsp_02

讀文章前,我們不妨先做個小小的實驗吧!如果我們用Google 搜尋「椰子樹」圖片,螢幕上所出現大部分都是白雲、沙灘、海洋的熱帶海島風光;但是當你搜尋「仙人掌」圖片時,所跳出來的結果大部分都是沙漠的景色。我相信大家對於這樣的結果一點都不意外,因為動植物的生長與分布都會受到氣候條件的限制,就如同你不會預期看到野生的獅子會和北極熊當鄰居。

傳統上,在地理學界常被使用的柯本氣候分類法(Köppen climate classification),便是基於氣候會影響自然植被的特性來區分不同的氣候型態,而氣候影響生物分布的特性在考古、地質研究領域也被廣泛應用。舉例來說,有一種名為舌羊齒(Glossopteris)的石炭–二疊紀植物,因為這類植物的種子很大,無法透過風力跨洋傳送,但在南美洲、非洲、印度與南極洲都有發現它的化石,所以可以推斷在早期這些陸地應該是彼此相連,並且氣候環境應是相似。

images

舌羊齒化石

既然我們都瞭解氣候會影響生物的活動與分布,那當氣候狀態發生變化時生物該如何因應?對於大多數的動物而言,由於活動能力較強,「遷徙」通常是動物面對大氣環境條件改變的第一選項,所以我們可以觀察到在非洲草原上的野生動物會隨著乾、濕季的變化,而進行大規模和長距離的遷移,候鳥也會隨季節變化而有南遷北返的現象。但是,如果大氣環境條件改變的速度太快或是發生改變的範圍太廣,生物無法在短時間內靠有限的移動找到適合生活的區域,那生物就必須改變生活模式來應對,例如「休眠」。

氣候影響生物族群分布

過去半個世紀以來,受到氣候變遷的影響,極端天氣事件發生的頻率有增高的趨勢,這意味著若是局部地區大氣環境條件的改變速度加快,當地的生物族群也將面臨一定程度的影響。另一方面,由於受到人類活動的影響,不但造成生物族群原始生存環境的破壞,同時也因為農業的發展導致在一定範圍中出現大面積同質性的作物,使得生物族群間的平衡與生物多樣性也逐漸消失。科學家注意到這些現象,也因此進行了一系列研究。

經過大範圍的調查與研究,科學家們發現生物受到氣候變遷影響,族群分布的狀況已經悄悄地發生了變化。這些改變除了先前提到的物種遷移之外,族群的數量以及生態系中的生物網路也發生了變化。生態學家透過收集與分析歷年生物族群分布狀態與氣候條件的相關性資料,進一步設計出能夠模擬與推測物種族群變化的數值模型。

在一份針對南非地區動物種族群分布與氣候變化的研究中,生態學家便利用這種數值模型推估當地179 個動物族群,在平均氣溫升高2℃的情境之下的族群變化趨勢。數值模擬結果顯示,78% 物種族群會發生縮減,17% 物種族群則產生擴張,大約2% 的族群會停留在當地並滅絕,只有3% 的物種不受到氣候變遷的影響。這一研究結果也顯示,大部分滅絕物種的生活環境都在原先氣候環境就極為乾燥的南非西部地區,存活下來的物種中有41% 動物族群會因為乾旱因素向東遷移,僅有少部分物種會反向往西遷移,這樣的生態現象被稱之為「群體遷移(population shifting)」。

images

非洲動物遷徙。Source: wikipedia

這一電腦模擬結果主要展現出先前我們提過的動物有因應氣候變化而遷徙移動的特性,以尋找適合生存環境繁殖下一代。這一方法對於無法自由活動的植物而言,卻是無法達成的任務,那麼植物又要如何因應氣候變遷進行調適呢?在最新的生態學研究中,針對1350 項不同的歐洲植物物種,在7 種不同的氣候變遷情境下進行模擬分析,其結論與先前模擬氣候變遷下動物族群反應的研究出現歧異;在這次的氣候情境模擬結果中,超過一半以上的植物物種將在二十一世紀末出現滅絕的危機。

更值得我們注意的是,在這些不同的研究結果都顯示,不管是動物族群的遷移或者是植物族群的滅絕,都會造成生態網路重大的變化。生態網路的改變,對於生態系統平衡是非常危險的一件事,很有可能藉由連鎖反應導致更為複雜的生態系崩解問題。雖然動物族群具備移動能力,但做為食物鏈中的任何一個階層,若無法適應氣候的變遷而發生族群數量的變化甚至滅絕,則整個生態系依舊會有崩解危機。另一方面,生物族群的遷移,也可能造成被遷入地區的原始生態系統平衡遭到破壞。所以我們不能單純利用遷徙能力來討論動物與植物族群對於氣候變遷的反應,任何一種物種的族群數量改變都有可能對整體生態系統平衡產生影響。

植物適應氣候變遷的演化

345px-Plagiomnium_affine_laminazellen

葉綠體。Source: wikipedia

雖然植物族群因為缺乏快速移動的能力,面對氣候變遷時的調適能力較差,但是也不是束手無策。在植物的演化過程中,植物已經發展出透過調控其生理反應來適應不同的氣候環境的機制。例如,葉片裡的葉綠體是植物行光合作用產生能量的重要胞器,但是如果光照強度太強時,對於植物的生長也會出現不利因素。科學家發現植物在不同的光照強度之下,透過葉綠體在植物葉片內的移動、葉綠體的聚合和分散,或葉綠餅轉向的方式來調整接受光子(photon)的數量。這樣的葉綠體移動(chloroplast migration)過程,是由植物體內的基因進行一系列的訊息調控所導致。

qwe

舉例來說,植物基因中有一種藍光受體基因(phototropin)可以隨著所接收到的藍光強度,透過基因訊息傳遞的機制產生不同指令,進一步調控葉綠餅的移動。在全黑暗的環境下,植物的葉綠體會因為重力的關係沉澱在細胞底部,當細胞接受弱光的照射時,葉綠體會往受光面移動;相反的,當強光照射的時候,為避免過多能量的釋放傷害細胞,葉綠體會往非受光面移動。

此外,在不同的氣候環境下,植物經過長時間演化後,會自然產生對於不同氣候環境條件反應的差異,這樣的差異通常存在於植物基因組內,我們稱為植物多樣性,而植物也可以藉由雜交的方式引進優勢基因,進一步的進行對氣候變遷的調適。

以臺灣的主食稻米為例,在自然環境中自然演化出適合缺水環境的旱稻(upland rice)以及必須生長在豐水環境的水稻(wetland rice)。科學家分別將這兩種稻米基因進行比對分析後發現,在演化過程中稻米裡有一組膜蛋白(Plasma membrane Intrinsic Proteins, PIPs)的控制基因,兩種稻米的「基因表達量」在遇到乾旱時,就會產生顯著的差異。當遇到乾旱環境時,旱稻的PIPs 基因會大量表達,但在相同環境中的水稻其PIPs 卻沒有明顯的反應,而此一差異就有利於旱稻在乾旱環境下生存。透過兩種稻米的雜交,就可以將抗旱基因導入原先缺乏的水稻中,進一步提高水稻的抗旱能力。然而這些防衛機制也都只能因應一定程度的氣候變化,如果氣候變遷的速度與幅度超過植物自體防衛機制能夠調控的範圍,將對於物種的延續將造成不可彌補的傷害。

images

台灣稻米。Source: 社企流

氣候亦受生物影響

生物會受到氣候變遷的影響,氣候也會受到生物活動的影響而發生改變。根據地球系統的能量收支平衡原理,當地表狀態改變時可能同時改變了局地的輻射能量收支平衡與水文循環的機制,再造成局地氣候狀態改變。美國的西北太平洋國家實驗室(Pacific Northwest National Laboratory)近期一項研究成果顯示,人為灌溉所造成的地表植被改變,不只增加土壤中的水分含量,更進一步改變了當地的蒸發與蒸散量,所導致的局地氣候反應是大氣比較容易形成淺雲(shallow clouds)。淺雲的存在會增加當地的反照率(albedo),進一步透過大氣輻射平衡機制導致當地的氣溫下降。

這類生物圈與大氣圈之間的反饋機制,最著名的就是1972年由英國科學家洛夫洛克(James Lovelock)所提出的「蓋亞假說」;這個假說剛被提出時因為缺乏嚴謹的科學機制探討,所以並不為學界所接受。

蓋亞假說:
洛夫洛克在1972 年的論文中提到,如果考慮到地球上所有存在的環境系統間會相互影響,那生物圈(biosphere)會扮演十分重要的角色。如果比較地球原始大氣成分與現今大氣的氧氣的含量,便可知道生物的光合作用改變的大氣的組成。這也是造成地球大氣中的二氧化碳含量,與在太陽系中位置相似的火星和金星有顯著差異的原因。進一步的衍生此一概念,在生物與地球系統的相互作用下,能使環境系統構成一個自我調整的整體。

為了解釋此一假說背後的物理機制,洛夫洛克於1981 年利用電腦模式模擬一個表面僅有黑白兩色雛菊的星球地表溫度的變化來說明。這數值模式的結構十分單純,白雛菊反照率高,但是喜歡生長於高溫的環境;黑雛菊反照率低,同時只在氣溫較低的環境中生長。當地表溫度升高時,白雛菊覆蓋的面積將增加,進一步導致地表反照率上升;反照率上升會使大部分的太陽輻射反射回太空,所以所吸收到的淨能量會減少,漸漸的地表溫度便會下降。

a

蓋亞學說之黑白雛菊星球。

當地表溫度下降到一定程度時,黑雛菊覆蓋的面積將會增加,導致反照率會降低,進一步使地表溫度再度上升。這樣的生物圈與大氣圈的負回饋機制,可以有效的建立起一個平衡系統;雖然這一過程中的物種分布與數量會不斷變化,但是地表溫度變化卻能被限制在一定的範圍之內。這種完美的氣候系統必須建立在無外在因素干擾的假設之下才可以成立,如果有其他非自然的人為影響,便很有可能導致平衡系統的潰散。

綜合言之,瞭解氣候變化與生物族群間的反應機制,是我們面對氣候變遷調適的重要課題之一。

e7d4899c79a011c961822d91807a2b7d_550_367

〈本文選自《科學月刊》2015年11月號〉

延伸閱讀:

兩種聖嬰譜出的年代週期
搶救地球Let’s Go—全球暖化與不時風雨

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以當個科青

The post 氣候變遷動物可跑,植物怎麼辦?——《科學月刊》 appeared first on PanSci 泛科學.

2015諾貝爾生醫獎 — 抗瘧藥物的故事與省思--《科技報導》

0
0

金克寧/畢業於臺大復健系、清華大學研究所、杜克大學博士。專長食用植物之標靶活性鑑定及化學純化。曾任職中央研究院。

5

抗瘧藥青蒿素來源於黃花蒿。Source: wikipedia

瘧疾在人類數千年的歷史上一直是揮之不去的陰影,至今已經奪取了數億人的生命,是歷史上造成人類死亡最多的疾病。古羅馬帝國因瘧疾猖獗而衰亡;巴拿馬運河開鑿工程亦因瘧疾而轉手延宕。但自五十年代始,傳統抗瘧藥物已全面失效,瘧疾氾濫奪取人命。青蒿素是從中藥青蒿(黃花蒿)中提取的高效、速效抗瘧藥。作用於瘧原蟲紅細胞內期,適用於間日瘧及惡性瘧,特別是搶救腦型瘧均有良效。其退熱時間及瘧原蟲轉陰時間都較氯喹短,對氯喹有抗藥性的瘧原蟲亦有效。青蒿素分子為全新之化學結構,以新穎之藥物機制抗殺瘧原蟲。青蒿素之衍生物及其複方在近代抗瘧醫藥作戰中作出重大貢獻,是近年拯救最多人類生命的化學藥物。

越戰和瘧疾

Malaria

人體血液中的惡性瘧原蟲環狀體和配子母細胞。Source: wikipedia

1955年,美國等民主陣營國家支持的南越和蘇聯等社會主義陣營國家支持的北越發生一場戰爭。這一地區自古以來就是所謂「瘴氣」之地,自三國時期諸葛亮南征孟獲到清乾隆年間數度進擊緬甸都因瘧疾而受挫,這裡的瘧原蟲似乎也比其他地區的同類更為強壯,當時療效最好的藥物氯喹已經無效。也是軍隊大幅死傷的重要原因。美軍因瘧疾死傷超過80萬人,但實際數量遠高於此。據說美軍非作戰性傷亡比作戰性死傷高出4~5倍之多。中國和北越軍隊,同樣遭受著類似的痛苦。支援北越的中國和陷入越戰的美國都積極尋找更好的治療藥物。

中美各自展開抗瘧新藥研發

美國當時積極展開抗瘧藥物的研究,沃爾特–里德陸軍研究所(Walter Reed Army Institute of Research)開始合成各種奎寧類衍生物相關藥物。他們當時的理論是抗瘧疾藥物必含雜環,據此測試了20萬種化合物,結果都不太理想。最終於1980年代研製出了甲氟喹。甲氟喹雖然藥效很強,但有嚴重精神方面的副作用。中國則於1967年5月23日由國家科委、解放軍總後勤部在北京飯店召開了「瘧疾防治藥物研究工作會議」,集全國力量成立常設機構稱為523辦公室。但當時中國正處於文化大革命的動亂之中,科研工作展開極端困難。工作組1967~1969年間共篩選4萬多種抗瘧疾的化合物和中草藥,未取得進展。

青蒿萃取物抗瘧疾

Tu_Youyou_and_Lou_Zhicen_in_1951.TIF

屠呦呦(右)與其導師樓之岑(左),攝於1951年。Source: wikipedia

科學家只得另闢蹊徑。1969年1月21日,中國衛生部中醫研究院參加「523項目」,屠呦呦教授任科研組長,那一年屠呦呦39歲,職稱是助理研究員。她從系統收集整理歷代醫籍、本草入手,整理出一冊《抗瘧單驗方集》,包含640多種草藥,其中就有後來聲名遠揚的青蒿。不過,在第一輪的藥物篩選和實驗中,青蒿的高溫萃取物對瘧疾的抑制率只有68%,還不及胡椒有效,在相當長的一段時間裡,青蒿並沒有引起大家的重視。

「青蒿一握,以水二升漬,絞取汁,盡服之。」

東晉人葛洪記載青蒿絞汁使用的辦法和中藥常用的煎熬法不同。這是不是為了避免青蒿的有效成分在高溫下被破壞?這個靈感,令屠呦呦敲開萃取青蒿奧秘的大門,她最先提出用乙醚低溫萃取青蒿素的方法,這一步至今被認為是青蒿初萃物有效性的關鍵所在。1972年3月,523辦公室在大陸全國南京中草藥專業組會議上,第一次報告了青蒿對鼠瘧原蟲近期抑制率可達100%的實驗結果。奠定她「青蒿素之母」的地位。後來中醫研究院的研究者也用低溫萃取的方法得到了可貴的青蒿素晶體。在江蘇高郵地區,就有用青蒿治療瘧疾的傳統。一句順口溜「得了瘧疾不用焦,服用紅糖加青蒿」在當地廣為流傳。顯然,低溫使用青蒿治療瘧疾,已有了廣泛的應用。

青蒿素的分離純化

雖然低溫青蒿萃取物展現一定的治療效果,但其實驗結果不夠穩定,且臨床前的動物毒性實驗中測出毒性。在山東中醫藥研究所、雲南省藥物研究所的共同努力下,羅澤淵等研究人員發現藥用青蒿中,學名黃花蒿(Artemisia annua L.)者有效,而學名青蒿(Artemisia apiacea Hance)者無效。應用的溶劑汽油提純法最早得到純的青蒿素藥物。

1973年10月他們已完成了黃蒿素的藥理和毒性的初步研究,經大、小動物的毒性試驗均未發現對動物的心、肝、腎臟有明顯的損害。惡性瘧疾病人服藥6小時後,瘧原蟲開始減少;16小時後,90%瘧原蟲被殺滅;20小時殺滅率在95%以上。雲南省藥物所羅澤淵等研究人員還初步確證了酉陽地區為優質黃花蒿的產地,並且首次得到高純度的青蒿素,為後來青蒿素研究工作提供了優質藥源。

青蒿素的化學結構

廣州中醫大學李國橋確認青蒿素臨床上之優異效果,青蒿素當時已被選為針對治療瘧疾系列的新藥物。但它的缺點是復發率高及生物利用率低。為改善缺點,了解藥物代謝,藥物作用機制以及合成步驟,故必須測定青蒿素化學結構並加以改造。青蒿素化學結構的測定以中國科學院上海有機化學研究所為主,北京中藥所人員參加,並和中國科學院生物物理研究所

2

合作完成的。中醫研究院於1977年在《科學通報》以「青蒿素結構研究協作組」的名義,發表了青蒿素這一新的化學結構。1978年5月,又以「青蒿素結構研究協作組」和中國科學院生物物理研究所名義,發表了青蒿素結晶立體絕對構型的論文。1979年第二篇青蒿素化學結構的論文,以北京中藥所和上海有機化學研究所科研人員署名發表於《化學學報》,青蒿素化學結構是一個罕見的含有過氧橋的倍半萜內酯結構(圖一)。

青蒿素的作用機理

普遍認為這種過氧化結構與青蒿素的抗瘧活性有關,瘧原蟲破壞人體的紅血球,體內含大量的鐵。青蒿素能被瘧原蟲體內的鐵所催化,其結構中的過氧鍵裂解,產生自由基。自由基與瘧原蟲蛋白形成共價鍵,使瘧原蟲蛋白失去功能,從而導致瘧原蟲死亡。這是一個全新的藥物作用機制,說明青蒿素能殺滅已經對奎寧類藥物產生抗藥性的瘧原蟲。含過氧橋的化合物在以往的藥物研究中從未引起人們的注意,因為這種結構非常不穩定,暴露在空氣中就會分解,更不要說進入人體發揮藥效了。

但青蒿素結構使它的過氧橋被環狀結構保護著,使其足夠穩定地進入人體,發揮作用後又能很快地分解掉,從而減少瘧原蟲產生抗藥性的可能性。我們不得不由衷地驚嘆大自然的奧妙絕倫。這也是天然藥學的獨到之處,人腦的想像是遠不能與自然的神奇相較量的。青蒿素的結構被寫進有機化學合成的教科書中,奠定了今後所有青蒿素及其衍生藥物合成的基礎。

化學修飾及最佳化

青蒿素的環狀結構保護了過氧橋的穩定,卻也造成青蒿素難溶於水和油,不易製成適當的劑型,生物利用率低。對青蒿素結構進行化學修飾,研製功效更好的第二代青蒿素類藥物。中國中科院上海藥物所研究員李英,在1977年成功研製出了青蒿素的第一個衍生物—蒿甲醚。中國軍事科學院熱帶研究所周義青率先陸續開發複方蒿甲醚。蒿甲醚在治療抗氯奎惡性瘧和凶險型瘧疾方面具有確切的療效。更重要的是它油溶性很大,可以製成針劑,對搶救危急瘧疾病人非常有利。

78310a55b319ebc4632c6bba8226cffc1e1716b8

蒿甲醚結構式。Source: baidu

現已被世界衛生組織(WHO)列為治療凶險型瘧疾的首選藥,並且為日後研製的更加高效的抗瘧新藥──複方蒿甲醚,提供了堅實的基礎。廣西劉旭發明的「804衍生物」(以其實驗室命名)可解決水溶性的問題,且療效提高5倍,這就是「青蒿琥酯」。青蒿琥酯為日後大陸和WHO瘧疾化療科學工作組作為治療腦型瘧的優先開發項目。青蒿素的衍生藥物還包括WHO與美國軍方合作研製的蒿乙醚和香港科技大學Haynes研製的青蒿碸等。

植物二次代謝物 提供藥物治療新思維

相對於分子多樣性枯竭的合成化學藥物庫,植物二次代謝物具有複雜豐富多樣的化學分子骨架,是發掘新藥物的寶庫。這次諾貝爾醫學獎說明植物能夠提供治療疾病新的藥物結構(過氧橋)及新藥物機制,新化學結構使得藥物治療得到新工具、新的分子作用機制提供新思維及新途徑給研發新藥物。但天然植物因成分太多,要測到單一分子活性,並進一步純化,具相當難度,沒有一等一的能力與技術幾乎無法做到。

發掘有藥物活性的植物分子,基本上須要兩大技術專業;首先必須有兩個獨立的活性偵測平臺,其次要有能夠自複雜的植物二次代謝物中分離純化單一分子並決定結構之技術,基本過程是植物化學和生物學之互相配合。近來之研究證實食用植物庫不僅是提供安全且新的藥物化學結構(見延伸閱讀),更能提供全新的分子藥理作用機制。由於過去藥物活性偵測科技落後,從植物中篩選活性藥物不但消耗巨大資源(青蒿素之發現)或得不到滿意結果,過程更是曠日費時。但伴隨著生物科技之進步,近來發展之偵測技術能夠以有限資源在合理時程,自食用植物庫中發現新藥物及新分子機制(見延伸閱讀)。

屠呦呦榮獲諾貝爾醫學獎

1

屠呦呦獲諾貝爾獎。Source: sinovision.net

中西方對成功案例論功行賞存在文化差異。筆者在美國待過三個實驗室:默德里奇(Paul Modrich,Duke University 博士學位論文)、萊夫科維茨(Rober Lefkowitz,HHMI 博士後計畫)以及奧立佛史密西斯(Oliver Smithies,中研院提供之sabbatical study)。因為不同科研背景,他們當初啟動尚在萌芽的 「諾貝爾獎研究」時,個人必須獨自面對研究之成果(失敗或成功)。青蒿素研發原創並不是一個人,是中國國防部因為瘧疾感染嚴重影響中國人之健康,以及越戰戰情而召集全國有能力的科學家賦予這特殊任務。青蒿素發現對人類健康有無與倫比的貢獻,但諾貝爾醫學獎不可能頒給一個團隊,必須有一個參與者代表整個團隊。

中國主導抗瘧新藥研發

有別於目前我們政府極力倡導以商業導向之藥物研發計畫,今年諾貝爾醫學獎頒給救人無數的新藥物,清楚明白地強調藥物研發之最基本動機在於拯救生命,商業利益不在考慮之內。瘧疾橫行於當時熱帶及亞熱帶的開發中及未開發區域,是人類疾病史上造成死亡最多的疾病。

由於瘧疾原蟲對傳統藥物產生抗藥性,瘧疾當時已是無藥可救,必須研發新的抗瘧藥物。新藥開發需要許多不同之專業且冗長時程,是非常燒錢的,其背後真的需要龐大的資金與支援。瘧疾當時是窮人的病,新藥開發投入之龐大資金難以回收,藥物開發經驗豐富的國際大藥廠是不會輕易啟動抗瘧新藥篩選研發。然而中國為了拯救其國人及戰場士兵之性命,不惜動用當時全國僅有貧乏的資源進行新的抗瘧藥物篩選開發。解救生命是當時唯一考量,完全沒有考慮智財權之保障及日後商業利益之獲取。

Anopheles_gambiae_mosquito_feeding_1354.p_lores

一種甘比亞按蚊,是瘧原蟲的最終宿主。Source: wikipedia

令人欽佩的是國際大藥廠並未那麼地惟利是圖;諾華藥廠以成本價提供青蒿素類藥物給落後地區病患。社會政府力量支持解決國家之特殊疾病挑戰;歐美之外國家的新藥研發均源於解決直接攸關該國人民生死存亡特殊疾病挑戰 (如南韓的抗生素,古巴的疫苗,大陸的青蒿素,臺灣的鴉片戒勒及烏腳病)。這些新藥物新預防研發均由政府力量支持,如同國防任務,國家並未考慮商業效益,而是秉持維護人民基本生命安全之至高原則開發新藥物。

中國科學家投入抗瘧新藥研發

當時被徵召從事抗瘧新藥研發的中國科學家,多數原本也不從事抗瘧藥物的研究,但在523計畫下,他們放棄原來研究的科目,以過去科技研發經驗進行抗瘧藥物的篩選和開發,有志一同解決瘧疾無藥可救的窘況。由於當時外國也沒有新的抗瘧藥物,所以他們必須秉著「自己的疾病自己救」的精神來開發新藥物,拯救自己同胞的性命。這也許在專制集權的國家才辦得到。因為地域、文化和基因的不同,每個區域國家都有其特殊疾病醫藥問題。例如烏腳病,歐美國家都沒有,這種特殊疾病問題必須我們自己運用現代的科技去解決。因為區域外人的不會遇到,所以不會注意到,也不會去解決特殊區域性疾病。

臺灣應先解決本地醫藥需求

臺灣早年醫學先驅如杜聰明和陳拱北等以其在歐美日本所學的科學經驗法則,解決當時臺灣本土特殊醫藥挑戰。重要的是他們並未將他在歐美和日本的研究帶回臺灣繼續研究;杜聰明以其留日科學經驗致力於解決當時臺灣人鴉片戒勒及毒蛇問題,陳拱北則以公共衛生學方法分析解決臺灣之特殊疾病。現在臺灣很多生物醫藥研究學者都到歐美留學就業,研究課題偏重於解決世界人類疾病,回來以後就將在國外研究課題帶回來繼續研究,這樣比較容易發表論文,研究也不會中斷,但往往忽略臺灣之特殊健康醫藥需求。

國內生物醫學研究之方向應該和公共衛生疾病調查有更密切的配合,依循「自己的疾病自己救」的原則,才能認真研究解決在臺灣本土之特殊醫藥需求。例如G蛋白在細胞內的作用從中樞到周圍和疾病治療藥物發展有密切關係,大約有三分之一以上的藥物均是透過G蛋白胞膜表面受體達到治療效果,目前為止至少三屆諾貝爾獎頒給和G蛋白有關之研究。但在臺灣卻鮮少有人研究G蛋白相關之生物及藥理活性,更不用說運用G蛋白受體來解決臺灣的特殊醫藥需求。

主要原因是長久以來臺灣學者們在國外缺乏這方面的訓練,結果是國內特殊之食物安全現象還停留在新聞媒體名嘴爭論不休,盛行率高的失智症及代謝疾病必須等待外國價格昂貴之新藥降價,食物對藥物代謝之影響僅限於藍莓胡蘿蔔缺少芭樂蓮霧。以有限之國家資源應先研發能夠解決本土特殊疾病需求之新藥物,積聚經驗才能和歐美並駕較量開發新藥解決人類重要疾病。

結論

捨棄天然藥物庫,歐美藥廠動輒幾億美金投入自幾十萬至上百萬巨量化學合成藥物庫中篩選新藥的作法,開始呈現瓶頸。而國內從2000年至今沿襲著歐美藥廠進行商業導向的生技製藥相關國家型計畫也即將進入熄燈階段。現今除歐美以外,能夠進入世界市場的新藥,如中國的青蒿素、南韓的抗生素以及古巴的疫苗產品,當初開發時都是秉著「自己疾病並自己救」的原則,才能有今日之成功。這次諾貝爾桂冠,可否讓我們從追隨歐美藥廠的集體迷失中得到一些啟示。

〈本文選自《科技報導》2015年5月號〉

3延伸閱讀:
2015諾貝爾生醫獎—寄生蟲病依舊糾纏人類2015諾貝爾化學獎—有核酸修復才能生生不息

看《科技報導》議論科學五四三

The post 2015諾貝爾生醫獎 — 抗瘧藥物的故事與省思--《科技報導》 appeared first on PanSci 泛科學.


海洋美食街上的覓食策略--《科學月刊》

0
0

陳俊堯/慈濟大學生命科學系助理教授,熱愛細菌的細菌人,研究領域為微生物生態,對環境微生物社會的興趣遠大於對人類社會的興趣,近年來亦致力於科普寫作的實踐與推廣。

Multy_color_corals

珊瑚礁。Source: wikimedia

珊瑚礁被認為是海洋中的雨林,是生物多樣性極高的地方。除了魚蝦貝類會選擇這裡棲身,海綿、海星、海膽也是住民。數量更多的是肉眼看不見的微生物,像是藻類、細菌、病毒們,也選擇在這裡安身立命。早在多細胞動物出現之前,細菌已經在海洋裡待了20 億年了。動物在充滿細菌的環境裡誕生成長,自然得跟它們交朋友。但上一代的好朋友不能傳給下一代,新生的個體需要自己去認識新朋友。世世代代的海洋生物靠著與身上的細菌在時間長河中所達成的默契,在每一代的時光中重新找到對方。

SONY DSC

夏威夷短尾烏賊。Source: wikipedia

像夏威夷短尾烏賊靠著體內的費雪弧菌發光,藉以打破自己滑過珊瑚礁的身影輪廓,以求躲過掠食者的偵測。這種烏賊必須在出生後的一兩天內召喚海水裡的費雪弧菌,這輩子才能得到細菌朋友的幫助來保命。短尾烏賊會在這段時間分解體內的幾丁質,用這氣味吸引海水中路過的費雪弧菌,讓它們循著化學氣味游進還在發育中的發光器裡,並長久住下。一切就像熟知彼此暗號的老朋友那般自然。

海洋美食街

珊瑚的健康也得仰賴微生物盟友的幫助。例如,甲藻是珊瑚主要的共生藻,在表皮下行光合作用,並將製造的養份分享給珊瑚。有趣的是,這些甲藻會合成小分子的二甲基硫基丙酸(Dimethylsulfoniopropionate, DMSP) 來對抗海水的高滲透壓,但這些DMSP 不會只留在甲藻體內,而會不斷的往外漏,於是只要珊瑚身上有甲藻存在,附近海水裡就會有DMSP 的累積。於是,珊瑚便成了不打烊的美食街,持續釋出DMSP、胺基酸和醣類,加上珊瑚的黏液也是醣蛋白,都是細菌可以利用的養份,進而吸引了更多的微生物。

post-152-1118308002

飛燕角甲藻。Source: baidu

在過去的研究中,海洋微生物學家已經知道珊瑚的黏液或DMSP 能吸引某些海洋細菌。雖然海洋環境裡有各式各樣的細菌,但並不是每一種都甘願被人類豢養在實驗室裡。所以,即便我們知道某些實驗室裡培養的海洋細菌對珊瑚的味道有反應,但是真正住在珊瑚礁一帶的海水細菌到底會不會這招,特別是那些從來不曾在人類實驗室裡出現過的菌種,還真的是個謎。

對養份反應大不同

托特(Jessica Tout)等人今年發表在《國際微生物生態學會期刊》(Journal of International Society for Microbial Ecology)的研究提供了最直接的答案。他們在澳洲採集珊瑚區的海水,連同水裡所有細菌全部帶回實驗室。他們把想要測試的養份放進注射針筒,再把針尖放進所收集來的海水裡,看看海水裡的細菌會不會受到養份氣味吸引,順著注射針往針筒內游。實驗結果發現DMSP 和色胺酸(Tryptophan)、酪胺酸(Tyrosine)都能吸引珊瑚區的細菌往來源游動,而非珊瑚區海水裡的細菌則對這些氣味興趣缺缺,顯示這兩區內的細菌對養份的需求反應很不一樣。

images

澳洲大堡礁珊瑚帶。Source: 北方網

不過把海水帶回實驗室後,溫度、光照這些條件都跟珊瑚礁原來的環境不一樣了,要怎麼樣才能知道在真實環境裡的狀況呢?研究人員這次使用了一種名為「原位化學趨性測試(In Situ Chemotaxis Assay, ISCA)」的特殊設備來回答這個問題。ISCA 是個塑膠製的盒子,裡頭放著要測試的養份,留有小開口跟外界接觸。研究人員把它放在珊瑚表面,看看住在這裡的細菌會不會受到養份吸引而游進這盒子裡。30 分鐘後研究人員回收ISCA 盒,取出留在裡面的細菌來計算數量、菌種及基因組成。結果很有趣,他們發現住在珊瑚旁的細菌對這些測試的養份很有反應,但是住得離珊瑚很遠的細菌則對這些味道沒太大的興趣。進一步分析珊瑚區細菌們到底有哪些基因,他們發現這些細菌具有比較多與化學趨性相關的基因,顯示它們在環境中尋找特定養份的能力比較好。

細菌生存的最適策略

到底這些在珊瑚礁裡討生活的細菌,用的是什麼樣的生存策略呢?他們分析了在裝有胺基酸、醣類、DMSP 或可以當做氮源的氯化銨之ISCA 盒裡所誘捕到的細菌,比對後找出各種細菌對哪些養份有反應。他們發現只有4.3% 細菌是每種養份都愛,但有高達76.4% 的細菌只對其中一類養份有反應。顯示在海洋環境裡當個全才可能沒有太大的優勢,必須要專精於某一類養份的偵測與利用,減少跟其它細菌競爭相同養份的困擾,才是在茫茫大海中比較有利的生存策略。

不過,這些對珊瑚氣味有反應的細菌,究竟只是聞香而來的路人,還是原本就蟄伏在珊瑚上的食客呢?例如紅細菌科裡有不少成員對珊瑚氣味有反應,這群菌常是健康珊瑚上最優勢的菌群,同時也會附著在珊瑚的幼生體表。這樣的狀況到底是珊瑚不斷的從海水裡用氣味徵召它們進來服役,或者細菌是珊瑚初生時就接收自親代的禮物,這得等後續的研究來解答了。

近年來珊瑚的問題引起全球關切,近十年來也有大量的人力投注在附生微生物的研究上。直接定序DNA 幫微生物點名的方法固然可以得到很多寶貴的線索,但是光靠一張點名單,並不足以認識全班同學的特質。有些研究人員將細菌群聚裡的所有基因定序,希望利用所找到的基因類型來猜測它們會做什麼;有些人則進一步分析細菌群聚裡的基因表現(亦即所製造出的蛋白質種類)來看它們正在做什麼。

托特的這項研究則是乾脆把觀眾席從實驗室搬到了海洋現場,看看真正參與運作的是哪些細菌。面對環境裡動物與微生物間的複雜互動,學術界還在瞎子摸象的階段,幸運的是來摸象的有一大群人,而且忠實地留下記錄讓後人參考。經由這些研究,未來我們將能更容易瞭解這些微小生物的性格和生存策略。

參考文獻:

  • Tout, J. et al., Chemotaxis by natural populations of coral reef bacteria, ISME Journal, Vol. 9(8):1764-77, 2015.

2

〈本文選自《科學月刊》2015年12月號〉

延伸閱讀:
臺大團隊解開珊瑚金字塔之謎
珊瑚的小型共棲生物

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以當個科青

The post 海洋美食街上的覓食策略--《科學月刊》 appeared first on PanSci 泛科學.

解密恩尼格碼密碼機——《科學月刊》

0
0

李中志/美國伊利諾州立大學電腦科學教授

1

艾倫‧涂靈。 Source: Wikipedia

艾倫‧ 涂靈(Alan Turing, 1912~1954)這位二十世紀最重要的科學家之一,電影《模仿遊戲》在國內上映後引發國人的興趣,對於不少偏離史實的電影情節也多有指正。相對於之前國人對這位近代科學史上的巨擘近乎無知,這是值得鼓舞的現象。可惜涂靈的貢獻是建立在相當枯燥且抽象的計算理論上,缺乏自然主義可直觀描述的實體,不像宇宙、黑洞、時間等,這些科普最愛的主題,經過適當的引導,就算是無背景知識的大眾,也能對近代物理做出正確的想像。但涂靈的計算理論是純符號的產物,很難窺其堂奧,即便是電腦科系的師生,不少人也是懵懵懂懂,不容易以三言兩語解釋涂靈對現代計算理論革命性的衝擊,只能人云亦云地推崇他為「電腦之父」。涂靈得此頭銜固然當之無愧,但何以致此?伴隨《模仿遊戲》出現的許多影評顯然力有未逮。

電影《模仿遊戲》以涂靈破解德軍密碼機為主軸,全劇不斷穿插涂靈在科學與哲學上更重要的兩個貢獻,「電腦的發明」與「人工智慧」。基於娛樂效果,電影裡營造的氣氛有些言過其實,有些則是涂靈不可取代的貢獻,但礙於過度專業無法深入,只能點到為止,顯然是銀幕上無法處理的科學史大問題,而這正是科普作者看完電影後必須承接的任務。

當代最成功的密碼機

3

恩尼格碼密碼機。 Source: William Warby(flickr)

先從電影的主軸,破解德國的恩尼格碼(Enigma)密碼機談起。第一台恩尼格碼造於第一次大戰末期,由德國工程師謝爾比烏斯(Aruth Scherbius)設計,之後與里特(Richard Ritter)合作共同取得專利,成立公司量產,估計先後有近十萬台的恩尼格碼被製造出來。恩尼格碼問世後立刻成為當代最成功的密碼機,縱橫二十餘年,之間被逐漸改良。恩尼格碼原本大量用於加密商業電文,德軍加強其複雜度後於1928 年全面用於軍事通訊,直到希特勒第三帝國瓦解為止。

2

謝爾比烏斯的恩尼格碼密碼機設計手稿。 Source: Wikipedia

日本結盟為軸心國後自德國引進恩尼格碼,改良為「九七式印字機」,負責加密與德國之間的外交電文。美軍的解密員稱之為「紫」機(Purple),有別於「紅」、「藍」加密機。紅藍兩機由日本軍部自行研發,也曾讓美軍傷透腦筋,但後來亦遭盟軍破解。與歐洲戰場一樣,密碼戰也是太平洋戰爭中極精彩且關鍵的一章。日本海軍元帥山本五十六化身孔雀東南飛,親上戰機視察前線,被美軍成功狙擊,便是日本軍部最高軍事機密的電文被譯破的慘痛代價。

不可否認,恩尼格碼的確是精巧的產品,展現德國人在二戰前精密工業的技術已達顛峰的境界,但放在科技史上,恩尼格碼實在稱不上是革命性的密碼機。它的數學模式相當簡單,算是傳統機械式加碼機的末代產物,完全沒用到數論、代數理論、複雜度理論等,這些近代加碼技術的基本理論。不管它的設計多精巧複雜,每個字母的變化看似撩亂,但每個分開的字母都是一個獨立的置換加密,在竊聽者擁有大量密文的情況下,用傳統密碼分析就可以直接破解。

恩尼格碼機的破解

德國人當然知道恩尼格碼的破綻,於是以一連串的標準流程來設定機器的初始狀態,試圖避開漏洞,雖有初步的成功,但最後仍遭破解。有趣的是,它的致命傷之一正是這一連串的標準流程。此外,恩尼格碼加密與解密呈對稱狀態,即加密與解密的運算與設定相同,加上其他已知的條件,導致了有效破解的捷徑。但這破解恩尼格碼的方法不是涂靈發現的,而是波蘭的密碼局在二戰前即擁有的祕密。波蘭這個民族優秀的科學家與數學家輩出,但國家多苦難,兩次大戰間夾在野心勃勃的東西兩強之間,朝不保夕。東有蘇聯共產國際的進逼,西有德國法西斯的擴張。基於國安需要,1920 年代晚期即成立密碼局,延請專業數學家研究密碼學。其中雷艾夫思基(Marian Rejewski),茲格阿爾思基(Henryk Zygalski),羅茲伊特思基(Jery Ró ycki),是破解恩尼格碼的主要三位數學家,其中又以雷艾夫思基的貢獻為最,這段史實要到1973 年才解密。

波蘭的密碼局在戰前就擁有關於恩尼格碼的完整知識,包括擷取長達十幾年的密文與例行設定機器的情資。雷艾夫思基花數年的時間檢視看似無意義的密文,尋找規則,有如哥白尼與都普勒觀察變化無常的行星運動,最後終於寫下搜尋初始設定的限制方程式,並以擄獲的恩尼格碼加以驗證。1939 年波蘭淪陷,波蘭密碼局驚險地保住了多年的研究成果,逃出淪陷區後交給向德國宣戰的英國,由英國軍情局的布萊切利園(Bletchley Park)團隊接手。同年剛結束在美國普林斯敦大學博士論文寫作的涂靈加入團隊,帶領最後的破解工作。

涂靈在布萊切利園建造的機器取名為Bombe,源自波蘭密碼局的Bamba,有「密碼炸彈」之意。波蘭密碼局的「密碼炸彈」在德軍加強恩尼格碼後已力有未逮,但只是速度上的問題,破解的基本理論未變。另一方面,德國不是不清楚恩尼格碼機的原理已被掌握,但過度自信,認為只要簡單加大初始設定的組合數,世上不可能有足夠的運算能力,在一定的時間內找到初始設定。這才是德國致命的錯誤假設,也成就了涂靈的重大貢獻。

4

戰期使用的Bombe。Source: National Security Agency

5

Bombe 上標有英文字母,在工作時這些圓柱體會旋轉。圖中Bombe 為布萊切利園內的仿製品。Source: Andy Armstrong(flickr)

涂靈重要貢獻

雖然涂靈並不是破解恩尼格碼機的原創者,但他的Bombe則與波蘭密碼局Bamba 的計算原理完全不同。涂靈引進大量的電子零件與更有效的演算法,讓Bombe 以當代無法想像的速度運轉,光是這點,譽涂靈為當代最頂尖的工程師已當之無愧。涂靈更利用統計原理,大量移除不必要的搜尋空間,至今仍是破解密碼的重要技巧。但涂靈也不是隻手達成任務,除了波蘭密碼局累積的知識,還靠布萊切利園同事的共同智慧,對Bombe 不斷改良,如威契曼(Gordon Welchman)的對角線板(diagonal board)便是加速Bombe 的重要改進。到戰爭後期Bombe 能在20 分鐘內完成計算,讓解密員得以在一兩個小時內確定德軍每天更換的初始設定。至戰爭結束為止,總共有約200台的Bombes 加入工作,也就是說,戰爭後期德軍的行動完全被盟軍掌握,焉能不敗?

值得一提的是,在1941 年底,德軍開始懷疑盟軍有聽取恩尼格碼機密文的能力,於是為恩尼格碼機多加一轉盤,初始值的搜尋空間因此呈指數增加。此舉困擾盟軍解密員多時,失聰達九個月之久,德軍潛艇神出鬼沒,造成1942 年盟軍船艦的重大損失。直到十月底英國海軍在埃及北面的地中海,擊沉編號U–559 著名的U–boat 潛艇。德軍在搶救無望後棄艇,三位英勇的英國水兵卻冒死奮力登上即將沉沒的U–559,企圖搶奪上面的一台新型恩尼格碼機。但機器被釘死固定一時無法取下,於是兩位進入內艙的水兵轉而搶救恩尼格碼機的檔案資料與密碼簿,拼命向外拋出,由第三名水兵在外接應救起文件。這兩名進入內艙的水兵最後來不及逃出,與U–559 同葬海底。這些文件堪稱二戰期間盟軍搶奪到最重要的文件,讓布萊切利園團隊一窺第四轉輪的奧秘,重新取得監聽德軍的耳朵。

二戰破解密碼的這一頁歷史,其實是比任何電影情節還要精彩的諜報戰,絕不是幾個天才關在屋子裡憑空想出來的,它是全面戰爭的動員,依賴大量的情報工作,慘烈的軍事爭奪,戰士與情報人員英勇犧牲性命所換來的。

影響電腦發展

就電腦發展史來看,涂靈在布萊切利園設計的機器,的確累積了許多電子電路的知識,或許對後來的電腦設計提供工程上的經驗,但並無理論上的關係。最主要的差別在Bombe 不是一台全功能的通用計算機器,而只是負責單一用途的機器,由電子線路與機械組合而成。應該比較像巴貝奇(Charles Babbage) 機械計算機的電子版。巴貝奇是早涂靈一百多年的劍橋學長,終生設計了兩台在他有生之年無法完成的複雜計算機,「差分機」與「分析引擎」,他的企圖也被不少人視為計算機的先驅。這些機器精巧複雜,但也和日後的電腦原理無關。

終戰後涂靈致力於設計真正的電腦,命名為Automatic Computing Engine,比同時在美國由馮紐曼(John von Neumann)設計的「馮紐曼機」與稍後的ENIAC(EDVAC的前身)還要先進許多,世界從此進入電腦的新紀元。

資料來源:

  1. David, K., Seizing the Enigma: The Race to Break the German U–Boats Codes, Houghton Mifflin (T), 1991.
  2. Robert, C., Codes and Ciphers, Julius Caesar, the Enigma, and the Internet. Cambridge University Press, 2002.
  3. Alenander, S., Introduction to Cryptography with Mathematical Foundations and Computer Implementations, A Chapman & Hall Book, 2011.

2016-01-cover〈本文選自《科學月刊》2016年1月號〉

延伸閱讀:
由淡入濃—如是我觀涂靈形象
數位影像密碼學

 

什麼?!你還不知道《科學月刊》,我們47歲囉!
入不惑之年還是可以
當個科青

The post 解密恩尼格碼密碼機——《科學月刊》 appeared first on PanSci 泛科學.

蒙古人崛起是因為氣候好?——《科學月刊》

0
0

劉昭民/前民航局氣象中心研究員,中研院科學史委員會委員,中華科技史學會會員,知名氣象、氣候史學家,著有《中國歷史上氣候之變遷》等書。

中國朝代的興衰,原來和當時的氣候有關!?

01

Source: Shutterstock

根據中國歷史上氣候變遷之研究,可以知道長期乾冷的氣候會造成嚴重的旱災和饑饉,使饑民和塞外的民族鋌而走險,四出搶掠,造成政治動亂,甚至朝廷覆亡。相反地,如果是長期暖濕氣候,會造成農業收成良好,國勢強盛。宋朝末年蒙古人的崛起,便是拜良好的氣候所賜。

民國103 年3 月11 日,《聯合晚報》第七版國際焦點版,報導〈誰暗助成吉思汗?千年神木告訴你〉;同年3 月12 日《中國時報》第12 版國際新聞曾報導〈成吉思汗稱雄,好天氣是大功臣〉。這兩篇新聞報導,皆源自美國西維吉尼亞大學赫瑟教授和哥倫比亞大學彼得森教授的論文,他們在外蒙古杭愛山區,研究松樹的年輪,發現從西元1200 年代起,數十年間松樹的年輪較寬,顯示當時氣候較為溫暖多雨。暖溼氣候有利於牧草生長、牲畜繁殖,成吉思汗因而崛起漠北,締造蒙古帝國,成為史上武功最顯赫的征服者。

我們再根據國史上的文字資料,可以發現右頁上圖中標示「暖期4」者,為國史上第四個暖期,自南宋光宗紹熙三年(1192 年)至南宋端宗景炎二年(1277 年)的85 年,呈現夏涼冬暖的情況,相關史料如右。

一、南宋光宗紹熙三年(1192 年)夏霜,九月和州隕霜連連。冬大燠,潼州路不寒,氣燠如仲夏。

二、南宋寧宗慶元元年(1195 年)冬無雪。

三、南宋寧宗慶元二年(1196 年)冬無雪。

四、南宋寧宗慶元四年(1198 年)冬無雪。

五、南宋寧宗慶元六年(1200 年)五月無暑氣,凜如秋。冬燠,無雪,桃李華(花),蟲不蟄(蟲不冬眠)

六、南宋寧宗開禧三年(1207 年)冬少雪。

七、南宋寧宗嘉定元年(1208 年)冬無雪。

八、南宋寧宗嘉定四年(1211 年)冬燠而雷,無冰,蟲不蟄。

九、南宋寧宗嘉定六年(1213 年),二月雪,六月無暑氣,夜寒,冬燠無冰,蟲不蟄。

十、南宋寧宗嘉定八年(1215 年)夏大燠,草木枯,百泉皆竭,斗米百錢,江淮杯水數十錢,渴死皆甚眾。

十一、南宋寧宗嘉定九年(1216 年)冬無雪。

十二、南宋寧宗嘉定十三年(1220 年)冬燠無冰雪。越歲,春暴燠,土燥泉竭。

十三、南宋寧宗度宗咸淳七年(1271 年)六月大熱,秋冬無霜雪。

由以上的氣候史料,可見冬燠無冰的年數較多,是比較溫暖的時期。全真教的邱處機(1148~1227 年),1224 年寒食時在北京作春遊詩:「清明時節杏花開,萬戶千門日往來。」可見當時物候和今日相同。又由冬不雨、無冰、冬燠、春燠、冬無雪、夏無暑氣、夏霜、夏雪等紀錄來看,可見南宋後半期的85 年,其平均溫大約和現在平均溫相若,是為中國歷史上第四個暖期。暖濕氣候造成蒙古地區天氣溫暖多雨,冬季少雪,草木繁盛,農牧業比較興旺。蒙古軍隊也因此士飽馬騰,有助於蒙古軍隊東征西討,建立史上版圖最大的蒙古帝國。

再仔細分析,南宋末年以及元朝初期,正是中國歷史上第四個暖期,第二和第三個暖期曾造成漢唐兩朝長治久安、國勢強盛,而魏晉南北朝以及明、清兩朝的冷期,造成長期的社會動亂,所以說南宋末年蒙古人的強盛興起,良好的氣候是重要的因素。

04

03〈本文選自《科學月刊》2015年6月號〉

延伸閱讀:
《氣候文明史》導讀
火山灰雲的科學知識

什麼?!你還不知道《科學月刊》,我們47歲囉!
入不惑之年還是可以
當個科青

The post 蒙古人崛起是因為氣候好?——《科學月刊》 appeared first on PanSci 泛科學.

布爾與電腦——《科學月刊》

0
0

項潔/臺灣大學資訊工程系特聘教授,兼任臺大數位人文中心與臺大出版中心主任。

布爾邏輯使得二進制在電子元件上得以實現,並且能夠進行基本的算術演算。從前巴貝奇雖然能設計,卻無法建造的可變換程序的計算機,到二十世紀中葉終於在布爾邏輯的基礎上得以完成。布爾對於電腦與資訊時代人類文明的影響,絕不亞於其他更著名的科學家,但是這樣的成就,卻是他所不曾預料的。

1946 年,世界第一台電子計算機(以下簡稱電腦)誕生了, 它的名字叫做ENIAC(Electronic Numerical Integrator And Computer),主要設計者是莫克利(John Mauchly, 1907~1980) 和伊克特(J. Presper Echert, 1919~1995)(當時團隊裡負責除法和開方運算的是一位華裔科學家朱傳榘)。那一年,距離布爾誕生已經131年,布爾也已去世82 年,他有生之年大概沒有想像到現代電腦發展的圖景。所以為何要在布爾誕生200 周年之際,談論布爾和電腦的關係呢?這個問題要從更久遠的過去談起。

01

史上第一台電腦 ENIAC,當時被美軍用於計算火炮彈道。相比現今電腦,其體積可說相當龐大,占地 167 平方公尺,組件包含上萬個真空管與電容器,重量達 27 噸。 (Source: terren in Virginia

計算機的發展

早從人類文明開始有精緻的交易行為起,就知道快速計算的重要。人類的第一個算盤,在西元前2500 年西亞的蘇美文明中就已出現,而且全世界每一個文明幾乎都有類似的工具。隨著工業革命帶來的商業和科技的發展,西方世界對計算的需求也越來越複雜,除了加減乘除外,還需要計算不同的函數,以及能儲存部分計算成果的機制等。換句話說,也就是需要從單純的計算器(calculator)進化到計算機(computer)。1801 年,雅卡爾(Joseph-Marie Jacquard, 1752~1834)就透過打卡(punch card)的設計來編織複雜的布料花樣,從現代的角度來看,那已經是在寫初步的程式了。

02

雅卡爾所設計之打卡編織系統,影響了後來計算機的誕生。(Source: John R. Southern

另一個更重要的發展,是比布爾年長24 歲的巴貝奇(Charles Babbage, 1791~1871)在1834 年開始設計的分析引擎(Analytical Engine)。巴貝奇花了數十年功夫改進這個機器,但一直到1871 年巴貝奇去世,分析引擎始終沒有被製造出來。(巴貝奇設計的另外一個比較簡單,專做多項式運算的差分引擎(Difference Engine),終於在1991 年被完整實現。)雖然如此,巴貝奇的分析引擎已經有了現代計算機的大致模樣。這個分析引擎的設計也是用雅卡爾的打卡機制,不同的是一個分析引擎的運作需要兩組卡片,一組描述要計算的函數及運算的指令,另一組包含函數中各個參數的值。熟悉1970 年代以前電腦的讀者,一定看得出這已經和當時的打卡機與電腦運作類似了。值得一提的是,巴貝奇最重要的同事叫做奧古斯塔‧ 愛達‧ 拜倫(Augusta Ada Byron, 1815~1852), 她是大詩人拜倫的女兒,也被公認為全世界第一位程式設計師。1980 年代美國國防部發展的程式語言Ada 就是以她命名的。

雖然分析引擎已經是一個通用的(general purpose)的計算機:具備中央處理器、記憶體、I/O 設計,甚至可以寫程式,而且距今150 年左右就已經被設計出來。但是,這個機器始終沒有被完全實現,關鍵就是因為分析引擎是機械式的,按照巴貝奇的設想,它必須靠蒸汽機動力來運轉,而當時的零件並沒有精細到如此地步;另一個問題則是經費,當時巴貝奇估計的需求用現在的價格來看,造價將超過8.5 億新臺幣。

NEW

巴貝奇所設計的差分引擎,包含超過 8000 個組件,重量達 5 噸。 (Source: Jitze CouperusMarcin Wichary

布爾和巴貝奇有數面之緣,在一封1862 年給巴貝奇的信裡,他感謝後者為他解釋差分引擎的細節。但布爾兩年後就去世了,所以如果他對巴貝奇的工作產生實質的興趣,兩人會激發出怎樣的火花呢?這部分也就只能靠後人的想像了。布爾的專注點是數學和邏輯,其中一個他感興趣的問題是,如何將人的思維透過數學的方法來呈現。在他1847 年的《邏輯之數學分析》和1854 年的《思想法則之探討》這兩部重要著作裡,布爾發展出一個後世所稱的布爾邏輯(或稱布林邏輯)(Boolean logic)。布爾邏輯的細節在本期中董世平教授〈布爾與邏輯〉的文章裡有深入的介紹,在此不再重複。不過這裡要提的一個重點是布爾的邏輯系統不但往上呼應到比他早2500 年的亞理士多德的邏輯,而且蘊含一個可以運算的方式,也就是布爾代數(Booleanalgebra)。布爾代數使得邏輯(或者說人類思維的方法)得以運算,這是個了不起的發現。

04

在倫敦科學博物館展示的巴貝奇的大腦。 (Source: Ross Huggett

何謂布爾代數?

布爾代數是由AND(x ∧ y),OR(x ∨ y),和NOT(¬x)三個運算組成。我們可以用布爾代數把一個邏輯命題表示成一個數學公式,如「x 或y 為真」變成x ∨ y=1,而「非x和y 為假」就成了¬x ∧ y=0。在這裡我們介紹一個和布爾代數等價,比布爾代數更容易運算但較不為人知的布爾環(Boolean ring)。布爾環和布爾代數不同的是將OR 用另一個運算XOR(Exclusive OR,⊕)代替,這個環的架構使得兩個運算(XOR 和AND)更接近我們熟悉的加法和乘法,所以在邏輯公式的運算上就更加直接。我們以下直接用+ 代表⊕,× 代表∧,推導出一個轉換系統:

05

A 的三個轉換將布爾代數的運算變成布爾環的運算;C 的四個等式僅用來表示 + 和 ×都符合交換律和結合律,所以不用管參數的前後順序;重要的是,B 的六個轉換,可以用來將任何一個用命題邏輯符號表示的布爾公式,簡化成一個唯一的標準型,如下:

06布爾代數造就電腦時代

布爾邏輯和布爾代數雖然在邏輯領域造成很大的影響,但長久以來除了數學界和哲學界之外,並沒有受到太多的重視,直到1937 年一個22 歲美國MIT 的研究生向農(Claude Shannon, 1916~2001)寫了一篇碩士論文〈繼電器與交換電路的符號分析》(A Symbolic Analysis of Relay and Switching Circuits)〉。在這篇劃時代的文章裡,向農觀察到任何電路(circuit)均可用一個方程式來代表,而這個方程式是由AND、OR 和NOT 三個運算(在電路學中稱為gates)組成,透過電壓的強弱可以呈現每個變數(電路學裡的開關,或switch)是正(true)或負(false)的狀態,而布爾代數正是從事這些運算的現成武器。其實不止是電路而已,數字本身也可以用二進制(binary)的方法來表現,如二是10(需要兩個開關),五是101(需要三個開關)等等。換言之,用二進制的開關電路(binary switching circuits)不但可以表示數字、函數,甚至可以透過開關的運作進行運算。這個發現開啟了電腦時代的蓬勃展開,直到今日。

07

向農。(Source: Tekniska museet

回到巴貝奇的分析引擎。前面說過,電腦大致所需要的核心組件,巴貝奇在一百多年前都已經想到了。然而,為何他沒有成功呢?差別在什麼地方?最大的差別,就在於現在的電腦只需要考慮兩個值(0 和1,也就是二進制),一切複雜的運算和數據都可以用這兩個值堆砌出來,而且電壓又是一個精確、快速、又不容易出錯的動源。半導體的發展已可以讓當初ENIAC 一間房子那麼大的電腦的功能濃縮在幾乎看不到的晶片裡還綽綽有餘,如果計算機還是停留在巴貝奇那時機械式的設計裡,這些都是無法想像的。電腦革命可以開展,布爾代數佔了極重要的地位,而布爾當初的純粹學理的研究,造成後代那麼大的影響,恐怕也是他未曾預料過的。

10〈本文選自《科學月刊》2015年11月號〉

延伸閱讀:
喬治.布爾─自學成大器的數學家
布爾與邏輯

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

The post 布爾與電腦——《科學月刊》 appeared first on PanSci 泛科學.

占星術是真是假?——《科學月刊》

0
0

吳昌任/臺北市立南湖高中地球科學教師。
林詩怡/臺北市立中崙高中地球科學教師。
兩人合著有《追星族的天空奇緣》(第49 梯次好書大家讀推介)、《星空球》(2013 年好書大家讀知識性讀物組)

人生總會有不那麼順遂的時候,明明已經盡力了,事情還是不如所願,唯有當事者得到一個合理的解釋,心情才得以釋懷,最常見的就是把這些無法解釋的遭遇歸咎於運勢。

占星術到底是真是假?從它的定義可以略知一二。鮮少有不合邏輯的騙術能存在許久,所以如果想要知道如何利用天文現象創造出占星術,就必須先把天文學研究清楚。早期研究天文是為了種族的延續,例如從日、月的運行訂出曆法,讓人民可以在規律的季節變化中,知道何時該做哪些事,使得糧食無缺同時避免災害。掌握天體運行的韻律之後,曆法主要架構就完成了,接下來只剩下微調,讓曆法可以長時間與日月運行吻合,這時候就有多餘的時間可以想想天上世界與地上人間的關係。

現在大家所說的占星術是沿自於巴比倫時代,也就是說,如果你想要瞭解占星術是真是假,就要先知道巴比倫人是如何定義各種影響運勢的星座。現在我們就先從最簡單的開始解說起。

每個人都可以從出生日期對照出自己的星座,這就是跟運勢有關的星座,稱為太陽星座。經過長時間的觀察,巴比倫人發現一年之中太陽會在恆星之間移動一整圈,這個軌跡稱為「黃道」,而這些經過的星座就稱為「黃道星座」。巴比倫人認為,當太陽位於哪個星座裡就主宰了人的個性。不同星座的人的個性為何,則是來自於人類對於這個星座的想像與解釋。以天蠍座為例,天上一部分的星星連起來像是蠍子的形體,所以稱為天蠍座。蠍子不會隨時用毒針攻擊,但是當要保護自己時,就會用毒針刺對方。所以天蠍座的人一下子表現出愛,一下子又讓人很受傷,簡單的說就是又愛又恨。

1

找找看天蠍座在哪!答案在文末。(作者提供)

如果世界上真的只有依照太陽星座去區分的12 種人,民眾不會想要相信占星術,因為你很容易就可以找到和你是同樣的太陽星座,但是個性與成就卻不同的例子。天上的星體不是只有太陽會相對於星星移動,所以太陽星座的定義可以用在從地球上看起來會相對於星星移動的其他天體上,例如:月球與行星,這讓占星術有更高的說服力。

一個月當中,月球與太陽的相對位置會改變,造成不同的月相,所以同一個太陽星座的人,其月亮星座可能會不一樣。太陽星座與月亮星座都相同的人,其金星星座、水星星座、火星星座、木星星座與土星星座的其中一些可能不一樣,如此一來,就可以把人分成12 的7 次方,也就是3 千5 百多萬種!這麼多的組合可能,對於當時的人口來說已經綽綽有餘,所以巴比倫人相信占星術能解釋每個人的差異,也不足為奇。

你可以想出挑戰占星術的其他例子嗎?說說雙胞胎吧!早期沒有超音波科技,四十幾年前的孕婦懷了雙胞胎也不知道,直到生產當天發現生了一個小孩之後肚子沒消下去,才知道還有一個小孩在肚子裡,所以當時的雙胞胎出生時間可以相差一個小時左右!

雙胞胎的太陽、月亮以及行星星座都相同,但是個性卻不一定相同。為了要解釋這個現象,占星術又增加了一小時以內就會出現變化的上升星座與下降星座。顧名思義,出生瞬間會有一個黃道星座一部分在東方地平線上,一部分在東方地平線下,這個黃道星座就稱為上升星座,同時在西方地平線附近的則是下降星座。因為地球自轉的關係,星星大約是以一小時15 度的速度持續繞著天球北極旋轉,所以如果你想要以雙胞胎的例子來挑戰占星術,就會因為出生的時間差,使得上升星座與下降星座在地平線上的比例不同,占星術就這樣把人又多分了144 倍的種類,數量約51 億,同時也解釋了雙胞胎個性不同的問題。

當心靈很脆弱的時候,即使是很平常的描述,你都會覺得說得很準,此時越是要小心有心人士利用這個時候讓你對他掏心掏肺的。我們再來討論一些從巴比倫時代到現在的天文事實,看看這些是如何影響占星術的。

你的生日當天,太陽真的還是在巴比倫人觀察到的那個位置嗎?

根據定義,出生當天從地球上看起來,太陽應該是在你認為的太陽星座的方向上。但是地球自轉軸的方向並不是固定的,比較像穩定旋轉之後的陀螺一樣,旋轉軸會慢慢的繞著一個看不到的中心旋轉,這樣旋轉一圈要大約兩萬六千年。垂直於地球自轉軸的赤道向外延伸到星空中,就稱為天球赤道,而天球赤道與黃道的其中一個交點被訂為一年的開始,在經過長時間的曆法變革之後,太陽運行到這個交點就是該年的3 月21 日,這個點稱為春分點。

2

當地球自轉軸改變指向的時候,天球赤道會跟著改變方向,使得春分點的位置移動,中國把這個現象稱為歲差,也就是說,一樣是3 月21 日,巴比倫時代看到太陽在天上的位置與現在觀察到的位置已經不同了。如果你在生日當天觀察太陽在天上的位置,可能已經不在你認為的太陽星座方向了。此時根據定義來看太陽星座的出生日期範圍,結果會與你之前認為的很不一樣,相差了三個星期左右。舉例來說:1 月28 日出生的人,根據以前的定義是水瓶座,但是現在1 月28 日太陽是在魔羯座的範圍裡。

為什麼以前只有12 個黃道星座,現在卻有13 個?

這是最近幾年又將占星術炒熱的話題之一,也讓占星術又重回大家聊天的話題中。會出現第13 個星座,代表一年當中的某段時間裡,黃道會經過第13 個星座:蛇夫座的範圍。究竟是黃道的位置改變了?還是巴比倫人沒有發現這一件事?

四千多年來,黃道的位置變了嗎?

如果地球繞太陽的軌道面改變了,那麼黃道的位置就會變。根據長久以來的觀測紀錄看來,地球繞太陽的軌道面並沒有什麼變化,也就是說,黃道並沒有在這四千多年內改變位置,所以黃道第13 星座並不是因為這樣才出現。

巴比倫人沒有發現黃道經過蛇夫座嗎?

左下的圖為人馬座、天蠍座與蛇夫座附近的星空,為了標示清楚,加上了星座連線,你很清楚的看出這三個星座以及黃道的位置,你覺得黃道有經過蛇夫座嗎?是不是就很明顯的看出來,在某一些日子裡黃道真的經過蛇夫座的一小部分,而這延伸出這個部分的星星不是很亮。

由影像就可以看出來,巴比倫人不是故意忽略掉蛇夫座,而是在沒有訂定出星座界線以前,這一段目前認為經過蛇夫座的黃道,會被認為是在天蠍座裡的。也就是說,會出現第13 個黃道星座,其實是訂出星座界線之後的結果,而星座界線是國際天文聯合會(IAU)為了將天上的星星清楚界定是隸屬於哪個星座,避免同一顆星有不同的名稱所制訂出來的。因為星座界線的出現,才會有黃道第13 星座的誕生。

占星學家發現了這個事實以後,就必須創造出蛇夫座的個性。記得嗎?方法就是依照星座的形象加以擴張。蛇夫座的人喜歡控制別人,因為蛇夫座就是一個抓住巨蛇的人,這樣你就更能了解星座個性是怎麼來的了吧!

每個星座的生日日期範圍都是一個月左右嗎?

有了星座界線,我們就可以更準確的依照定義把哪幾天出生的人屬於哪個星座重新判斷一次。如果你有可以標示出日期與太陽位置的星空球,就可以發現太陽在每個黃道星座範圍裡的日子並不一樣長,在室女座的範圍內可以長達四十幾天,而在天蠍座裡卻不到十天。

巴比倫人知道天王星、海王星、冥王星嗎?

八大行星裡的金木水火土,是人類用眼睛就可以看到的5 顆行星,所以古文明皆有這5 顆行星的紀錄,其他的三顆行星因為距離地球較遠,都是透過望遠鏡才發現的。巴比倫人不知道天王星、海王星、冥王星的存在,怎麼可能會把這3 顆行星的影響放入星座運勢裡呢?可想而知,現在你看到運勢裡面提到天王星、海王星、冥王星的部分,都是這幾百年來的占星學家加進去的。

4

冥王星後來被改列為矮行星,它對於星座運勢的影響還有這麼大嗎?

冥王星被發現後沒多久,天文學家就知道它的質量、體積很小,但當時的占星學家為了趕上最新的科學進展,紛紛把冥王星的影響加入星座運勢中。結果2009 年冥王星被國際天文聯合會改列為矮行星,這些曾經說冥王星影響了運勢的人現在是不是該改回來?如果冥王星還是擁有這麼大的影響力,那麼和它一樣都屬於矮行星的穀神星(Ceres)、女戰神(Xena)等,是不是也該納入影響運勢的因素之中?

知道今日的占星術有這麼多矛盾之處之後,大家應該回到占星術當時發展出來的時空背景,正確的瞭解它的用意。但是,我們也不需要把占星術當作是萬惡,只要不迷信就好了。反之,我們可以用占星術來提醒自己往更好的方向前進。如果你覺得星座運勢當中好的部分和你對自己的期待還滿像的,何不把這些描述記在心理,讓自己朝著這個方面前進。至於那些不好的描述,就不要太在意了!

5

解答

2016-01-cover〈本文選自《科學月刊》2016年1月號〉

延伸閱讀:
銀河導航系統
探索最美麗浩瀚的研究領域—中研院天文所所長賀曾樸專訪

什麼?!你還不知道《科學月刊》,我們47歲囉!

入不惑之年還是可以當個科青

The post 占星術是真是假?——《科學月刊》 appeared first on PanSci 泛科學.

來自深空的交響詩—重力波 ——《科學月刊》

0
0

林俊鈺/國研院高速網路與計算中心副研究員,協助推廣產學界的高速計算應用。研究興趣為平行計算與天文物理。

1

Source: shutterstock

重力,是生活中最熟悉的基本作用力,也是科學革命的起源之一。自16 世紀以來,科學家如哥白尼、布拉赫、伽利略、克卜勒等人,從天體軌道的觀測歸納出行星運動的規律與太陽系的樣貌,並且在牛頓的《自然哲學的數學原理》中精簡成三大運動定律與萬有引力定律,影響了往後約兩百年的科學思想。

2

《自然哲學的數學原理》Source: Wiki

1915 年,愛因斯坦的廣義相對論,對強重力下的牛頓理論做了修正,並成功解釋水星軌道偏移(進動)(參考動畫)與牛頓理論所預測的差異。這每一世紀僅僅43 角秒的微小偏移,代表兩個理論對時空本質截然不同的解釋。重力被重新詮釋成質量彎曲時空的結果,所造成的現象如時間延遲、光線偏折或是重力造成的頻率偏移等,已在過去一個世紀中太陽系內的各種精密實驗得到證實。我們日常生活中所依賴的全球定位系統,也利用廣義相對論進行修正,以抵銷高度約兩萬公里的衛星與地面的時間差。

何謂重力波?

廣義相對論發表的隔年,愛因斯坦發現弱重力場近似下的場方程式具有波動特性:就如同電荷的加速會輻射出電磁波,質量的加速也會輻射出重力波,並以光速傳遞重力場的能量、動量與角動量。

所謂的重力波,即是「時空曲率」以波的形式向外傳播的擾動。時空曲率是引力的來源,當光線經過質量較大的星球時,會造成光線路徑的彎曲。質量越大,所造成的曲率也越大。時空曲率也會影響長度或角度等幾何性質的變化,而長度變化比率正比於重力波的振幅。任何非對稱的質量分布變化(精確地說,是質量的四極矩變化:以橄欖球為例,沿著長軸轉動並不會產生重力波,但沿著其他軸轉動則會)都會產生重力波,例如旋轉的中子星、或其他緻密星體如黑洞的互繞與碰撞、超新星爆炸、甚至是宇宙誕生的大爆炸,都會產生如漣漪般的時空曲率波動,並傳遞至地球造成微小的長度變化。

重力效應無法藉由單顆粒子的運動來測量,因為我們無法區分局部重力與加速下的慣性力兩者間的差別,如:電梯上升瞬間的加速度,就像重力一般會使人感覺變重(即等效原理)。真正可觀測的效應是潮汐力,即物體因重力,而感受到垂直兩方向的收縮及擴張,就好像地表海水受月球影響在不同處形成的漲潮與退潮。

3

假設有一平面重力波穿出紙面以z 軸傳遞,潮汐力會使下圖環形排列的測試質量分別在垂直與水平方向擴張與壓縮,兩個偏振方向差別45 度。但它的效應實際上十分微弱,比如在室女座星系團的雙中子星碰撞產生的重力波,經過四千五百萬光年傳遞到地球的振幅──僅10-20 量級,也就是每公里的長度改變只有原子核尺度的百分之一。而人為造成的重力波更小了,愛因斯坦方程式的非線性性質也讓近距離的重力波定義不那麼明確。

環形排列的測試質量受不同偏振方向之重力波下的影響。 (Wm. Robert Johnston)

環形排列的測試質量受不同偏振方向之重力波下的影響。 (Wm. Robert Johnston)

如何觀測重力波?

重力波是否只是單純的座標變換假象?愛因斯坦也曾懷疑重力波是否可能被觀測到。重力波存在的間接證據,在80 年代以後才逐漸明朗,並於脈衝雙星軌道週期的觀測中被證實。不過早在60 年代起,馬里蘭大學的韋伯(Joseph Weber)就開始嘗試觀測重力波。他所製作的探測器是一個兩公尺長,直徑一公尺的鋁製圓柱,共振頻率約在1660 Hz,表面的壓電材料會因重力波通過而形變並產生電流。韋伯準備了兩個相距約一千公里的相同偵測器以排除局部區域的雜訊,並宣稱觀測到來自銀河系中心的重力波。然而,此實驗引起相當多爭議,現今也認為當時的靈敏度並不足以觀測到訊號,但韋伯啟發了後來的重力波探測。韋伯的共振型探測器的頻寬較窄為其致命傷。所以自60 年代開始,包含韋伯本人的科學家,開始思考利用麥克遜干涉儀來測量重力波所造成的潮汐力。

5

雷射干涉儀重力波探測器示意圖。 Source: Yinweichen

干涉儀利用雷射光的相位干涉來測量微小距離變化:如上圖,穩定的雷射光經由分束器分為兩束,並分別在兩測試質量(反射鏡)間所形成的光學共振腔(光儲存臂)中來回數百次後,沿原路回到分束器合併,並產生干涉條紋。共振腔可使光程增加數百倍並提高靈敏度。當重力波經過時,干涉儀兩臂的長度改變就會造成干涉條紋變化。大型雷射干涉儀的規模遠比共振圓柱探測器宏大,無論建置或運作都涉及龐大團隊,所以在70 年代末期,科學家開始從數十公尺的小型干涉儀測試所需的技術。90 年代起,開始規劃公里等級的地面大型重力波雷射干涉儀。

目前運作中的第一代重力波干涉儀網路包括美國華盛頓與路易西安那的兩座偵測器LIGO、義大利的Virgo、德國的GEO600、日本的TAMA300。由於宇宙中的重力波波源及波長通常遠大於公里尺度的干涉儀,因此單座干涉儀的方位解析度很低,干涉儀網路除了能消除局部區域雜訊以增加信號可信度外,也強化了定位能力。第一代干涉儀網路可定位波源方向約十幾度的解析度;相比之下,電磁波的觀測動輒能達到角秒以下的解析度。

6

美國華盛頓重力波偵測器:LIGO。 Source: 左(Keenan Pepper)、中(Dmitry Alexeenko)、右(DmitryAlexeenko)

預計2015 年底後,第二代重力波干涉儀將陸續運作,以觀測十到十萬赫茲範圍的重力波。除了第一代成員的升級,印度的IndIGO 也將加入,方位解析度也可提高。它們的靈敏度與觀測半徑約是第一代的十倍,也就是一千倍的觀測範圍與機率,可偵測十億光年內的雙中子星碰撞,或更遠的黑洞碰撞,遠遠超過我們所處的超星系團。歐洲太空總署也預計在十年內,將三艘太空船組成的大型雷射干涉儀eLISA 送入地球公轉軌道,以探索更低頻的重力波,約是地面干涉儀頻段的萬分之一。

自21 世紀初以來,雖然尚未直接觀測到重力波,但技術上確實可在各種內外的震動、熱擾動、以及雷射光的量子擾動下,測量遠小於原子核尺度的長度變化。目前的結果也提供了重力波的相關訊息:例如,脈衝星的自旋減慢速度、黑洞或中子星雙星系統的發生機率、重力波背景輻射(來自於早期宇宙的原始重力波、或是銀河系內許多鄰近白矮星碰撞所造成的重力波總和)的強度上限。

重力波計算

為了實際將重力波應用到未來的天文學上,針對緻密雙星如黑洞或中子星的互繞與碰撞所產生的連續重力波訊號,科學家必須先建立不同波源及參數的波形,作為匹配濾波(matched filtering)的模板,與觀測信號逐一比對,以擷取出波源質量、自旋、自轉周期、軌道面及方位等訊息。就像指紋比對或是潛艇利用聲紋資料庫比對來判斷敵艦。

黑洞可說是廣義相對論中最神祕的部分,卻是個沒有內部結構的單純物體,只需要質量、角動量與電荷三個參數即可描述,而且它們的動力學僅牽涉時空的演化。實際的黑洞周遭多半會圍繞著星際電漿等物質,並且伴隨吸積過程產生各種電磁輻射,增加了建立數學模型的困難。相比於牛頓雙體運動的圓錐曲線解析解,雙黑洞演化——最簡單的廣義相對論雙體運動,也倚賴愛因斯坦方程式的數值計算,特別是中段的融合波形,直到2005 年才首度被計算出來。

7

雙黑洞與吸積盤的演化模擬。從上到下顯示雙黑洞從開始脫離吸積盤後旋入到融合的過程,可以清楚觀察各別的黑洞磁場集中至兩極形成噴流並合併成一條。  Source: Roman Gold et al. in arXiv:1312.0600 and arXiv:1410.1543

雙黑洞演化會以近乎圓形軌道互繞旋入(Inspiral)、碰撞融合(merger)、最後趨於穩定(Ringdown),過程中的重力波頻率逐漸上升,每互繞一圈並產生出兩個周期的重力波。當雙黑洞距離夠遠時,互繞的速度遠小於光速,軌道半徑因微弱的重力輻射逐漸縮小;到了臨界距離,約為事件視界(event horizon,可視為黑洞的邊界,任何訊息,包括光,一旦進入就無法逃出,完全獨立於視界外的觀察者)半徑的八倍時,黑洞接近光速,強大潮汐力使雙黑洞傾刻間撕裂崩潰並碰撞融合成單一黑洞,產生最強的重力波;最後,融合後的黑洞震盪並逐漸靜默成為靜態黑洞,此時的頻率約為反比於質量的自然振動頻率。整個過程大約損失10%以下的質量轉變成重力波輻射。一個十倍太陽質量的黑洞雙星臨界距離約為兩百公里,融合過程只需數百毫秒。

數值相對論

模擬非線性愛因斯坦方程式衍生出一門新興學科:數值相對論。計算上的首要問題是,如何在形式上為四維的愛因斯坦方程式中,解讀出空間與時間概念?畢竟自1905 年的狹義相對論後,物理定律都可用四維張量(可以想像成具有多個方向的向量)表示,使得慣性座標下的物理定律都具有一樣的形式:物理現象雖看似不同,但在各個平移、轉動及等速座標系間皆有確定的(羅倫茲)轉換關係(就好像在非相對論的日常經驗下,我們用向量來描述物體運動並熟悉它的轉換,因此在雨中奔跑時,預期垂直下落的雨滴會迎面而來一般)。更遑論廣義相對論下,每一點都可以有不同的慣性座標,使得時間與空間的概念更糾纏不清。

經過了近半個世紀後,形式上四維的愛因斯坦方程式終於被拆解成較明確的三維空間的演化方程。在分解表示下,四維時空可被任意地「切」成三維空間的堆砌,不同的切法是由四個參數來描述,分別代表相鄰切片的時間與空間平移。一旦知道某初始切片的三維內稟曲率(只依賴於切片上的幾何性質,例如三角形的內角和,而不依賴於它如何鑲嵌在四維時空)以及「速度」(也就是三維切片的外賦曲率,描述該曲面如何鑲嵌在四維內。例如,將一張紙捲曲成圓柱狀,即使在三維空間看起來,二維紙面的法向量呈現發散狀──外賦曲率增加,但對於紙面上的螞蟻而言,它們所畫出的三角形內角和為180 度,內稟曲率仍為零),並設定相鄰切片的四個參數,愛因斯坦方程式就能決定接下來的演化結果。無論怎麼切,拼湊起來都可重建成相同的四維時空。這也意味著座標只是一種標記,不會影響到原本的幾何性質。以一條白吐司的三維空間為例,可以選擇漂亮地切成每一片寬度相同的二維片,也可以切得歪七扭八,但拼湊起來都會重建成相同幾何性質的三維白吐司。

在過去,即使是最簡單的單黑洞計算模擬也非常不穩定,對於十倍太陽質量的單一靜態黑洞系統的預測尚不及半秒鐘,就好像只能預測下一秒鐘的氣象預報是沒有意義的。人們逐漸了解這並不是數值方法的問題,而是演化方程式本身的不穩定,使得在有限位數的電腦計算中,微小誤差迅速地以指數成長並破壞計算結果。

1995 年後,日本與美國的物理學家分別以數學上等價的演化方程式解決了不穩定的問題,搭配上適當的時空切片,之後的發展豁然開朗。第一個完整的雙黑洞旋入碰撞融合波形在2005 年分別由加州理工學院、美國太空總署與德州大學三個研究群發表。現在的科學家已有能力以數百台電腦進行長時間的黑洞或中子星模擬。目前的趨勢是考慮更實際的相對論電磁流體問題,如吸積盤與噴流、中子星黑洞演化、超新星爆炸過程等。

數值相對論在重力波觀測上扮演獨特的角色,因為它是唯一可計算出複雜天體過程及其完整重力波的工具。未來,這些精確波形將作為波形模板,與重力波干涉儀的觀測做交叉比對以獲取波源性質。隨著觀測靈敏度增加,就需要更準確的模擬波形。數量也是挑戰之一,例如雙黑洞波形就至少包含七個參數,如質量比、自旋等,即使每個維度只取十個代表點,波形模板數量也很驚人,因此除了資料的降維技術等其它近似方法,龐大計算量不可避免,模板數量需求甚至可達百萬數量級。如果考慮更複雜的中子星系統,包含電磁場、微中子傳輸方程、輻射傳輸等熱效應,參數空間更大。

模擬與觀測

從2006 年起,模擬與資料分析團隊逐漸建立起共同語言,並在2009 年後,開始正視理論或數值波形在重力波干涉儀觀測中扮演的角色,此時全球的重力波干涉儀觀測已進行一段時間了,並且LIGO 正起動第六次的運行。在這一次運作中,觀測團隊祕密地將一個模擬重力波訊號「注入」到干涉儀網路中,人為製造反射鏡的移動以產生假信號,來測試資料分析團隊是否可將該信號找出來。結果不負眾望,他們獨立地發現了這個模擬的雙黑洞碰撞訊號,並且通知合作的天文台關注該天區接下來的發展。未來的模擬將朝向最極端天文現象的分析。以「伽瑪射線爆」為例,吸積物質、磁場與重力的交互作用會產生高能量光子與可觀測的電磁訊號,例如電子加速形成的同步輻射,或是光子與原子碰撞產生逆康普敦散射而獲得的能量。

最近2011 年的模擬中,科學家首次計算出兩個直徑約十幾公里的中子星碰撞融合成黑洞,並產生噴流的過程。在融合後的瞬間,磁場從一團混亂的炙熱物質中逐漸增加至地球磁場的一千兆倍,並且向兩極形成類似漏斗的狹窄通道,形成高能量噴流。在雙黑洞模擬中也出現類似的噴流。這些噴流或電磁輻射與重力波形成的時間及強度關係,都是理解未知天文過程以及增加重力波觀測的機會。

8

耗時將近兩個月的中子星碰撞模擬。在這個歷時不到30 毫秒的炫麗過程,顯示中子星融合並形成黑洞後的瞬間,以白色線條表示的磁場迅速增強自並從兩極延伸出去。 Source: M. Koppitz and L. Rezzolla from NASA/AEI/ZIB

高能天文物理現象,往往伴隨著物質與強重力場的相互作用,因此仰賴廣義相對論扮演探索未知宇宙的嚮導;另一方面,深空的觀測也同時檢驗著這些基本理論。未來的天文學將結合重力波觀測以及近來的宇宙線或微中子觀測,開啟探索宇宙的另一扇窗,讓我們一窺宇宙深處,帶來新的驚奇。近一個世紀的重力波理論,在經歷近半個世紀的觀測實驗後,也將有希望在下階段的大型觀測中獲得直接證實。

延伸閱讀:

  1. Kip S. T., Black Holes and Time Warps: Einstein’s Outrageous Legacy, 1995.
  2. Sathyaprakash, B. S., Schutz, B. F., Physics, Astrophysics and Cosmology with Gravitational Waves, 2009.
  3. Centrella, J. M. et al., Black-hole binaries, gravitational waves, and numerical relativity, Rev. Mod. Phys., Vol. 82:3069, 2010.

1234〈本文選自《科學月刊》2015年8月號〉

延伸閱讀:
愛因斯坦與廣義相對論的誕生
時間起源與量子重力

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

The post 來自深空的交響詩—重力波 ——《科學月刊》 appeared first on PanSci 泛科學.

談物理課中的典範敘述-丁肇中的實驗物理——《科學月刊》

0
0

簡宗奇/桃園市立南崁高中物理科教師。

01

1976 年諾貝爾物理獎得主丁肇中博士。 Source: wikipedia

能給電子一個大小嗎?

電子之為物,微乎其微;電子之小也難以詞敘,但其影響力能造就如此繽紛多彩的3C 產業,影響現代人類生活至深且鉅。不過當學生一問:「電子既然是基本粒子,那它有體積嗎?」「如果有體積,那半徑是多少?」倒還真的不容易回答;這是大哉之問,不管是看成是科學式或是哲學式的命題,要提出中肯而完整的答覆是有相當難度。我通常會以華裔諾貝爾物理獎得主丁肇中教授過去在這方面的實驗研究為例回應,並簡述一段粒子物理發展的歷程與故事。

丁肇中是來自臺灣在國際發光的實驗物理巨擘,近半世紀以來的成就已為學界崇高典範,同為華人都能深感光榮。從他身上可見其鮮明的人格特質,其堅毅卓絕的精神與窮究物理的睿智,更值得我們嚮往與學習。

1947 年間,由費曼、薛文格與朝永振一郎建立的量子電動力學主張電子是沒有體積的點狀粒子。但是在1964 年,美國哈佛大學與康乃爾大學的專家實驗結果否定了此一說法,他們利用高能光束照射電子的研究發現電子是有半徑的,且在10-13 至10-14 公分之間。

對此一理論與實驗的衝突,丁肇中在1966 年用德國電子同步加速中心的機器以不同方法重做了此一實驗,最後證明電子的半徑小到不可量度,量子電動力學(QED)還是對的。30 年之後,他又利用歐洲共同核子研究所的LEP 加速器進行相同的實驗,靈敏度再提升了3 個數量級後結論依然不變:電子沒有體積,QED 正確無誤。

丁肇中藉此給了我們一個體會,這也是科學家應有的懷疑態度,不畏懼挑戰權威,永遠要保持獨立思考,「不要盲從專家的結論。」

在不疑處有疑

接著丁肇中就質疑,「同樣是基本粒子的夸克就只有三種嗎?」雖然當時以三種夸克的論點就已能解釋看到的所有現象;如要找尋新夸克,需要靈敏度更高的探測器,學界多半認為不可能也沒必要,因此他提出的計畫未受青睞、飽經挫折;經過多年的努力之後,才在美國布魯克海汶國家實驗室的AGS 加速器進行這項實驗計畫。這項實驗科技突破以往,其靈敏度高達百億分之一;他比喻,「如同在一座下雨的城市裡,每秒鐘有一百億個雨滴,其中只有一個是紅色的,而你要把它找出來」,可見其超高難度。

丁肇中相信自己的物理直覺,毫不膽怯地迎接挑戰,終於在1974 年間發現了由全新夸克組成的J 粒子;這項創舉證明了三種夸克論點是錯的,並且這種質量大、壽命長的同族粒子也都陸續現身;他因此獲得1976 年諾貝爾物理獎;而他在諾貝爾獎頒獎典禮中,突破慣例以中文演說的事蹟更是一段佳話。

他以此為例鼓勵後進:「永遠對自己充滿信心,做自己認為是正確的事。」這是丁肇中給我們的第二種體會;科研工作一樣有險阻,自信心與智慧是勇往直前的動能。

「全力以赴,準備接受驚奇」

布魯克海汶國家實驗室的AGS 曾是在1950、60 年代最大的加速器,研究團隊曾經為了研究π 介子與質子的交互作用時,意外地發現2 種微中子與CP 對稱破缺;在70 年代規模最大的費米國家實驗室曾經為了探究微中子物理,結果發現的是第5 種、第6 種夸克;史丹福直線加速中心也曾經為了實驗檢證量子電動力學,結果也是出乎意表地找出了「部分子」、「τ 輕子」與「ψ 粒子」。

70 年代末期,丁肇中在德國電子與正電子對撞實驗室裡本來是要研究第6 種夸克的,最後意外地在偵測器中發現了新的粒子射流,後來他們稱之為「膠子」,這是傳遞強作用力的媒介物質,在量子色動力學(QCD)裡舉足輕重,其重要性自不待言。而這段研究歷程賦予了我們第三種體會:「對於意料之外的現象要有充分準備。 」丁肇中治學嚴謹,有精準的物理直覺,能掌握現象脈絡、洞察機先,也是這項偉大發現的重要關鍵。

接著在1980 年代,丁肇中持續在高能物理與基本粒子的領域發光發熱,領導並主持近20 個國家、600 多名科學家的大型國際合作計畫在歐洲共同核子研究所的LEP 中進行;其以高能的電子與正電子對撞後製造宇宙創生的能量狀態,試圖藉此追索真理的閃耀火光。其多項實驗結果確立了三代的基本粒子家族,確認電子與夸克是沒有內在結構、沒有體積的基本粒子,並且對標準模型的論證做出許多重要的貢獻。

丁肇中在實驗物理方面的重要貢獻

20n

實驗力爭造物功

丁肇中在90 年代開始投入找尋反物質與暗物質的「國際太空反物質探索計畫──AMS 實驗(Alpha Magnetic Spectrometer)」。這項計畫是將人造的磁質譜儀送上太空用以偵測反物質與暗物質。前驅性計畫的AMS-01在1998 年由發現號太空梭載至太空進行了10 天實驗;AMS-02 則在2011 年由奮進號太空梭送上國際太空站,固定在太空站上執行長時間的偵測任務,是世界迄今唯一獲准在國際太空站進行的大型科學計畫。

03

探索宇宙反物質與暗物質的磁質譜儀AMS-02。 Source: AMS-02

AMS-02 由16 個國家、60 多所大學、600 多位科學家合同運作,臺灣包括中研院、中科院、中央大學、成功大學與國家太空中心都參與設計製造、校正觀測儀器與數據分析的任務。AMS-02 四年來蒐集的數據顯示在暗物質的闃黑當中已乍現曙光,其最新繪出的數據分布趨勢與暗物質理論模型的前半段極為相似,後續的研究發展可見樂觀與信心。他給我們的第四個體會是「要實現你的目標,最重要的是要有好奇心;要對自己正在做的事感興趣,而且要勤奮地工作。」

04

搭載AMS-02 的國際太空站。 Source: NASA

丁肇中縱橫物理世界數十年,他時以親歷的這四個科學實驗串起自己作為實驗物理學家的生涯;至今,他仍未休止,他壯行真理千山,實驗力爭造物功,仍在物理探索的最前沿奮進不懈;他鼓勵年輕人如果有志投身科學研究,要刻苦工作、不怕艱辛,應該打開眼界對科學發展的方向有明確的認識。

述說典範也是教學

「故事敘述」是後現代行政哲學裡,組織互動溝通與建立心智模式的行動策略之一,透過故事敘述的歷程可為促進系統思考、型塑共同願景與履行達成目標;此施之於教學亦然。科學史則是科學課程故事敘述的主要文本,必要時可以適時激發學生學習興趣,營造物理課堂的情意氛圍,啟動熱誠的學習行為,並且引人入勝。

高中物理教科書鮮少提及華人的貢獻,主要是因為課程單元相關性之故,不過以其長年來在實驗物理的各項偉大成就來說,丁肇中仍然值得大書特書的。「真理隱乎幽微,而慧智窮究之」;我想這是仰止大師「雖不能至,而心嚮往之」的最佳寫照了!

述說一個科學歷程或故事,詮釋一個科學概念,融入一種情意教育,試著與人性良善特質兼容並蓄,讓物理往情性感知的一隅靠攏,使生硬的科學課程擁有勵志的元素,如此一來也許會更有意義;有人說這也是一種教育美學。

2016-02-cover〈本文選自《科學月刊》2016年2月號〉

延伸閱讀:

親身體驗史上最大物理實驗—CERN OPENDAYS
研究基本粒子的理論學家—中央大學物理學系蔣正偉教授專訪

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

點此觀看我們的改版紀念MV!

The post 談物理課中的典範敘述-丁肇中的實驗物理——《科學月刊》 appeared first on PanSci 泛科學.


禽流感知多少?禽流感的偵測、防治與全球大流行前的準備

0
0

金傳春/臺大公共衛生學院流行病與預防醫學研究所教授與臺灣公共衛生促進協會顧問,致力於病毒傳染病的流行與防疫政策研究,為本文通訊作者。

  • 曾子容/輔仁大學醫學院公共衛生學系
  • 萬灼華、施浩榆/臺大獸醫專業學院獸醫學系
  • 顧家綺/臺大醫學院免疫學研究所
  • 黃昭瑜/臺大公共衛生學院流行病與預防醫學研究所
  • 顏慕庸/臺北市立聯合醫院傳染病防治部
  • 李昌駿/中央研究院基因體研究中心

Source: imtv

禽流感病毒的亞型很多,但影響人類的感染與流行仍是少數的亞型。所以本文針對影響人感染與在臺灣、亞洲其他地區流行的四種重要禽流感亞型病毒,詳述其臨床病徵與病患處置、在動物衛生與公共衛生的防治作為及全球大流行前的準備,特偏重各環節的偵測工作與衛生教育。

禽流感在人的臨床病徵、傳播途徑與病患處置

禽流感在人的臨床病徵極似人流感,因此流行病學調查危險因子相當重要。臺北市衛生局多年推動流行病學調查必問TOCC,包括旅遊史(travel, T)、職業相關暴露史(occupation, O)、接觸史(contact, C)及患者家中或工作地或學校或其他曾去處是否有群聚病例(clusters, C),以提升醫療照顧者與公共衛生從業員對禽流感防疫的警覺性。

一、H5N1亞型禽流感病毒

H5N1禽流感病毒至今仍是有限性的人傳人,患者多具有家禽接觸史,潛伏期2~5天,臨床表徵中,約有七成會有發燒、咳嗽現象,且超過五成感染者伴隨呼吸急促,少數有黃痰、疲倦、肌肉關節酸痛、嘔吐、腹瀉情形,另約六成人感染H5N1者的肝指數呈現異常,嚴重者合併肺炎、肺出血、腎衰竭與敗血症休克等多重併發症而致死。

二、H9N2亞型禽流感病毒

1999年香港發生H9N2兩人病例,家禽是感染源,推測為禽傳人之接觸感染,臨床症狀有發燒、嘔吐、喉嚨及頭痛,輕症者為結膜炎及類流感症狀,在2003及2013年均有零星病例。

三、中國H7N9亞型禽流感病毒

H7N9亞型禽流感病毒的潛伏期約1~10天,約七成感染者有家禽接觸史或出入活禽市場,人類的傳染途徑主要經由吸入或接觸而感染,臨床表徵有高燒、咳嗽,重症者會因細胞激素風暴(cytokinestorm)致全身炎症反應(systemic inflammatory response syndrome),出現嚴重呼吸衰竭、肺炎,進展為急性呼吸窘迫症候群、敗血性休克,甚至多重器官功能障礙, 部分患者出現縱膈腔氣腫(mediastinal emphysema)、肋膜積液等。併發肺炎個案之胸部影像學表現呈片狀影像、雙肺多發性毛玻璃狀(ground glass opacity)及肺實質化(consolidation)影像。

四、臺灣H6N1亞型禽流感病毒

H6N1亞型禽流感病毒在臺已在地化四十餘年。主由接觸、環境暴露而感染,全球唯一報告人類感染H6N1病例是在臺灣的一位20歲女患者出現發燒、咳嗽、呼吸急促、頭痛及肌肉痠痛等症狀。回溯其病毒可能來源之接觸史,並無流行病學上的直接證據。因此,此病人如何感染H6N1禽流感病毒尚無定論。

五、禽流感病毒病患之處置

將病患安置在通風良好(換氣率≧每小時12次)的病房(空氣傳染隔離病房)或負壓隔離病房,並持續保持隔離、採用標準防護措施,非必要醫療行為時,勿開房門,其房內擺設不應有毛毯等易附著病毒之物品,設置專屬洗手臺及衛浴設備,限制進入病房診治照護之醫療人員總數。運送病人過程中,須採高規格生物安全規範,降低院內感染與傳播。

Source: epochtimes

動物衛生與公共衛生防疫政策與作為

一、動物衛生的防疫作為

(一)禽流感病毒在禽類的臨床表徵、不顯性感染與防疫困難處

對臺灣公共衛生威脅最大的H7N9禽流感病毒,於2013年2月底自中國上海病人中首次分離,該病毒是三方組合的新病毒水禽的H7和N9亞型病毒各提供HA與NA基因及源於雞的H9N2亞型病毒提供內部的六段基因。H7N9禽流感病毒在雞隻的感染,大多呈現不明顯的臨床表徵,因此屬於「低」致病性禽流感病毒,造成H7N9病毒在禽類預防及控制上極大困難。

另H7N9病毒感染哺乳類雪貂為模式研究,顯示雪貂可藉由直接接觸和空氣傳播兩方式散播H7N9病毒,其中直接接觸的散佈效果較強,雪貂感染此病毒三天內,病癥尚不明顯時,體內的病毒量已達高峰而呈有效散佈。病理解剖分析知病毒主要感染的部位包括上、下呼吸道及淋巴結,此和患者的病癥雷同。鑒於此結果,若是未來此H7N9病毒適應人群,而能在人體內有效率的增殖並傳播,大規模的人傳人群聚感染將無可避免,再加上病毒在明顯病癥發生之「前」即可散佈,致病患無法即時隔離,因此不能有效防止病毒擴散。

雪貂 Source: newsmarket

其他亞型的高致病性禽流感病毒,包括香港與中國大陸的H5N1、荷蘭的H7N7、加拿大H7N3、墨西哥的H5N2及最近兩年在韓國、日本、德國、英國、荷蘭、美國流行的新型H5N8與新型H5N2病毒(HA蛋白屬於2.3.4.4演化分群),均會造成禽類的嚴重病癥(雞群與鵝群的快速致死),不容忽視。

(二)禽流感病毒在禽類的傳播

禽流感病毒持續不斷在世界各地禽類演化、變異與流竄,不僅帶來生態衝擊,每年數以萬計的雞鴨因感染禽流感,造成禽相關產業的重大損失,尤其是高致病性禽流感病毒致陸禽大量死亡,造成經濟財政的一大負擔;另去年流行的H5演化分支2.3.4.4禽流感病毒在健康鴨鵝仍有傳染性。因此,禽流感防疫仍需更多積極防治作為。

禽流感病毒主要是經由帶原動物與飼養禽直接的接觸或經由糞便、灰塵等帶病毒介質的間接接觸飼養禽而傳播,因此,為避免病毒在密集飼養的雞或鴨群中傳播,透過空間的隔離阻隔外來病毒進入與生物安全的嚴格要求,避免眷養與野生禽類直接接觸以及其糞便、羽毛等風險物掉進飼養環境而再持續傳播。此外,人員、物流、器械的進出和流向也應管制消毒。飼養環境的衛生十分重要,包括場地消毒、水盆及飼料盆的清潔等,定時且嚴格進行消毒程序,將可大大降低病原滋生、傳播的風險。

(三)禽流感病毒在禽類的偵測

許多禽流感病毒在農場的感染率較活禽市場為低,因此活禽市場提供病毒複製增生和基因突變、基因重組的絕佳環境,而利於H7N9傳播。由於H7N9在禽類感染後的病癥通常不明顯,導致偵測上極大困難,無法以病禽的外觀或活動情形做即時的正確判斷或猜測,所以只能仰賴實驗檢驗法,並配合世界動物衛生組織(World Organization for Animal Health, OIE)及國際糧農組織全球流感監測網(OIE/FAO global Network of expertise on influenza, OFFLU)的建議以推動「整合監測」(integrated surveillance)。

國內層面,對全國養禽場應例行性進行廣泛主動偵測,此尤須產界、學界(包括獸醫診斷)及政府三方攜手合作、互通資訊有無,應鼓勵禽農盡早誠實地向政府單位及相關研究機構報告疑似病例,政府也應立即採檢、公布診斷結果,並與學界共同指導禽農,採取正確的防疫措施。當某地區爆發禽流感疫情時,應立即將所有禽類(包括已感染、可能感染及曾與病禽有接觸史的鳥禽)撲殺,並請相關單位迅速採檢。為了確實執行,獸醫必須與當地的養禽協會合作,以確保能最即時地圍堵病毒、防止擴散。目前常見的問題是通報過晚或於周末通報,致檢驗人力不足,待檢驗結果確定才採取防堵,如此病毒恐早已迅速擴散,難提升防疫效能。我國過去較注重陸禽的防疫,所以水禽的禽農在此波流行受創甚鉅,再三彰顯水禽禽農的防疫教育有待加強。

Source: huaxia

臺灣四面環海,且位處候鳥(尤指水禽)過境之地,可為禽流感病毒建立一個良好的基因池(gene pool),即為禽流感病毒基因重組提供重要的病毒資訊。因此,長期於候鳥棲地的禽流感病毒監測,可知悉在於臺灣背景環境中的病毒基因圖譜(gene spectrum),於禽流感疫情爆發初期,即可分辨病毒來源為本地原生、境外引入或是重組病毒。

由於臺灣的特殊地形,致活禽運輸線幾近成環狀,因此,每當禽類發生大規模禽流感疫情時,易演變成一發不可收拾。然禽生長環境的衛生條件低,致禽流感病毒在環境落地生根,新進入乾淨的禽類也易成為禽流感病毒持續演化的驅動力。

國際層面,據世界動物衛生組織的準則,強化「早期偵測」是最佳策略,在2014~2015年新型H5N8與H5N2跨國流行,國際合作野鳥偵測的呼聲更高若我國農方盡早公布H5病毒基因序列,可加速國內風險評估與國際合作。

(四)禽流感病毒在哺乳動物的監測

目前禽流感H5N1病毒可感染虎、印尼貓及豬等等哺乳類動物,由此,一旦禽流感的疫情擴大,在重要哺乳類動物(豬、狗等)的偵測極為重要,若剛開始不知感染幅度時,可先著手血清偵測(serological surveillance),遇到血清抗體盛行率高的動物,應進行病毒偵測與臨床偵測,臨床偵測應採用症候群偵測,症候群的發病數增加時,再與病毒偵測相串聯。

2014年臺灣大學獸醫系學者自臺灣的狗分離得禽流感H6N1病毒(A/canine/Taiwan/E01/2014),且發現其PB2的627位點有適應哺乳動物的氨基酸(627K),又在狗身上測得此H6N1病毒陽性抗體,此結果與中國大陸高福院士研究群以HA蛋白結構分析,發現臺灣的禽流感H6N1病毒在與宿主受體結合(receptor binding site)上,有自早期嗜禽而近幾年轉變為較傾向哺乳動物,是相一致的結論。

(五)國際動物檢疫

為避免病毒跨國傳播,海關的檢疫甚為重要,包括人、活體動物,甚至是肉品、禽蛋,平日必須抽樣檢驗,一旦發現任何異狀,須迅速通報處理。

(六)禽流感病毒在禽類的疫苗

在禽類流行初期,及早偵測與撲殺後,若對於周遭方圓內的禽場進行禽流感病毒環狀疫苗施打,增加疫苗覆蓋率,可提高動物對病毒的抵抗性,同時降低病毒大幅散播。目前最普遍的策略是利用疫苗的交叉保護力,為動物施打過去曾使用而達一定成效的疫苗,儘管這類疫苗內的病毒株往往不與現況流行的病毒株相符,但因這些病毒表面上有相似的抗原,因此可以引發動物對數種不同但相似的禽流感病毒產生抗體力價,進而達到保護效果,如H7N3疫苗,不但保護動物免於H7N3的感染,對H7N1也有一定的保護力,藉此達交叉保護的效果,或降低病毒從已感染個體向外傳播的機率。

然疫情波及面過大時,若疫苗涵蓋率未達百分之百及抗體免疫力低時,反會促使病毒變異,禽流感生態學家一致堅決反對在高致病性禽流感流行後於禽類施打疫苗的作法,如日本北海道大學人畜共通傳染病控制中心主任喜田宏教授(Hiroshi Kida)於2014年11月在臺灣家畜衛生試驗所召開「家禽流行性感冒預防與控制」國際研討會中再三反對疫苗防治禽流感,而呼籲強化「早期偵測」與對高致病性禽流感病毒全面撲殺。

二、禽流感病毒在人禽介面的傳播、偵測與防治

(一)禽流感病毒在人禽介面的傳播

H5N1禽流感病毒至今僅有局部性的人傳人。至目前,H7N9尚未適應人類,人傳人的感染病例十分侷限,且人感染H7N9的病例,有近75%以上的患者均有接觸禽類暴露史,而在中國大陸,活禽市場為主要的感染源,研究顯示,即使患者沒有直接接觸到禽,人暴露於活禽市場環境會提高感染H7N9的風險,因此,活禽市場的禽密度成為禽流感病毒是否會在人群中大流行的預測指標;此外,活禽市場收容各地不同來源的禽類,帶來不同亞型的禽流感病毒,致使禽流感病毒能彼此交換遺傳訊息,造成基因重組,提高病毒的流行潛力,因此關閉活禽市場是圍堵當地H7N9持續擴散的有效防疫作為;然而有些禽農因此將禽轉運至他地販賣,助長禽流感病毒的跨地散播。

另方面,鳴鳥(songbird)和鸚鵡也是禽流感病毒的潛在傳播者,許多家庭會飼養這類禽鳥當寵物,公園等公眾場所也時而可見,這些鳥類和人類若發生密切接觸,將提升對人的感染威脅。如雀科內的十姊妹(society finch)、麻雀以及鸚鵡科的鳥類,在感染H7N9後的四到六天會開始散播高濃度的病毒,當下可能沒有病徵或非常不明顯,於是這些禽類可帶著H7N9病毒繼續活動,並持續感染更多禽鳥。因此,阻擋家中飼養的禽鳥接觸外界的野生鳥是最重要的防疫作為。而傳統信仰的放生儀式,也需防範可能經由親密接觸鳥的臉與嘴而感染。

(二)禽流感病毒在人群的偵測

越來越多新型流感病毒的全球人病例,警示其本質為人畜共通傳染病原。但預測禽流感病毒是否有跨越宿主而感染人類的能力,必須在病毒源頭(禽類宿主)進行病毒監測,馬上公布病毒的氨基酸序列,經分析病毒所帶的分子標記及動物實驗進行風險評估。自2015年暑至2016年元月底,尚未見我國農方的每月不同禽種的H5禽流感病毒之氨基酸序列快速公布,甚難及時進行對人的公共衛生風險評估。人類症候群監測方面,經由呼吸道症狀監測搭配病毒培養,易提早偵測到新型流感病毒,如2013年臺灣感染H6N1禽流感病毒的病例。

Taiwan home to first confirmed H6N1 flu patient

H6N1 病毒 Source: yourhealth

綜言之,常規化的禽/人流感病毒與氣候因子環境的臨床、病毒、血清抗體與環境的四方面整合性監測(integrated surveillance),此與世界衛生組織與世界動物組織近年提出「整合健康」(one health)的概念相同,即人畜共通傳染病,必須一開始自偵測到其他種種防疫作為是整合考慮人、動物與環境三方面齊頭並進,期達防疫最大成效。過去法國細菌學家巴斯德推動狂犬病防疫時,即紮根此觀念。因此,如平日即有雞鴨蛋的產量數,一旦發現其降低或禽類的病癥數有異常時,即可採檢,並進行及時防疫,以減低後續傷害,也才能達到料敵機先、決戰病毒於人類之外,緩和後續禽流感對於人類健康、社會及經濟上衝擊。

(三)阻斷傳播與衛生教育

飛沫傳染的防護措施

患者一旦出現類流感症狀,即應戴口罩,如病情嚴重時,應依照醫院標準作業流程處理,並立即送進有負壓設備的隔離空間,醫護人員應配戴N-95口罩連同頭罩、護目鏡、隔離衣及手套。每日需以次氯酸鈉溶液實施環境消毒,清洗及消毒設備。

醫護人員應具高度警覺心,隨時察看自身或家人是否出現發燒和嚴重急性呼吸系統綜合症的症狀。如發現症狀,應立即通知醫院與公共衛生單位旅遊史職業接觸史即是否曾打流感疫苗,確診有症狀的患者在探明疫情之前應當妥善隔離,直到潛伏期結束。

Source: asianews it

接觸傳染的防護措施

新型A型流感的因素雖有多種可能,但多數病例顯示活禽接觸史為一重要關鍵,因此活禽市場在禽流感病毒傳播上扮演之重要角色,而我國政府已在2013年5月起,禁止在傳統市場內屠宰活禽,對阻斷禽流感病毒傳染人的貢獻很大。

接觸傳染的波及面更大,因此個人防護的清潔工作也相當重要,正確的手部清潔可以減少流感和急性呼吸道感染的傳播,醫界習以「內外夾攻大力丸」之口訣提醒洗手之重點部位。由於污染的微生物可在手上存活30分鐘至數小時,並藉由手接觸傳染他人,因此在進食前、處理食物前、進出公共場所後、處理廚餘及廢棄物後、出外返家後等進行手部的清潔,在人潮眾多的廣場或公園建立公共洗手臺並設置手部消毒殺菌劑,並評估其降低流感傳播的成效。

空氣傳染的防護措施

流感病毒主經由咳嗽或打噴嚏等飛沫傳染,尤在擁擠、封閉空間內(如飛機內部、卡拉OK娛樂場所、密閉教室),藉由唾液飛沫傳染。因此,航空旅客在流感新病毒株的跨國跨地傳播中扮演相當重要的角色。世界衛生組織建議在流行期間,延遲前往流感盛行地的非必要旅行。

以衛生教育認知、態度與行為(knowledge, attitude, practice, KAP)分析,雖大多數乘客對流感有基本認知,但尚欠缺正確的態度和預防行為。因此,航空公司應推動流感預防策略以維護乘客健康。作法有:(1)當旅客進入登機口,分發口罩給乘客;(2)座椅後背放置口罩;(3)或分發消毒紙巾或提供洗手液給乘客。研究發現旅客在出發前較少尋求旅遊健康建議,目前我國已有旅遊門診,未來可強化流感流行季前家庭醫師、門診醫師相互配合、共同圍堵。

綜言之,學校應實施健康教育的政策溝通與強調預防措施、醫療人員可考慮參與強調預防和健康促進的活動及航空公司應將流感的預防措施納入空服員培訓的教育內容。

(四)抗病毒藥物

一旦病患出現類流感症狀,經檢測確定為流感病毒但又非H1N1及H3N2的型別時,應合理懷疑患者感染「新型」流感病毒或禽流感病毒(如2013年人類H6N1禽流感的經驗),以盡早對病患施予抗病毒藥物(如克流感)。如2009年新型流感H1N1病毒流行時的克流感角色,目前我國衛生單位已儲備克流感與瑞樂沙等對抗流感之藥物,以因應未來的新型流感流行,此為群聚圍堵策略。

Source: HC360

(五)疫苗預防

由於禽流感H5與H7病毒目前尚無大量的人傳人現象,致其造成全球流行的機率仍低,所以世衛組織的準備工作,是針對高度疫情國及高風險國的禽畜業者高危險族群,進行人用疫苗臨床試驗,亦有國家已大量儲存人用禽流感疫苗。

在人方面,我國季節性流感疫苗的免費施打族群,包含禽畜業者,以降低不同宿主的流感病毒之基因重組,另涵蓋老人、小孩、孕婦、第一線工作人員。在2014年時加入50~64歲高風險慢性病患接種流感疫苗,以減低其感染流感後惡化原有之前驅疾病。

(六)風險溝通

預防和治療傳染病的失敗可能會導致社會巨大衝擊。據估計,全球每年有超過700萬人死於流感,幾乎等於全世界總人口的千分之一。然而,如不能有效控制及預防流感,死亡人數可能更高。因此,各國政府應努力提升流感控制的效率。

風險溝通為「人與人交流之間,有關風險或潛在風險對人類健康或環境團體和機構的信息和意見的互動過程」。風險溝通與公共衛生、環境安全和醫療行為均有密切關聯,成為醫療保健的樞紐。對潛伏期短而傳染率高的流感病毒,風險溝通的成效越高,提早供應即時性的疫訊而告知民眾與決策者,敦促相關人員行為改變,降低感染或發病機率。至今禽流感病毒的風險溝通最大障礙在忽視「低」致病性禽流感病毒的風險。

政府和個人之間的良好信任關係將增疫苗接種的意願,而達防止疾病擴散的目標。過去臺灣研究發現流感的資訊來源,可信度較高的是來自醫護人員,若新型流感發生流行時,醫護人員對禽流感的認識及預防措施,將對民間的防治作為發揮很大的作用。因此,對於政府及醫療機構方面的流感防治需考慮下列三種面向:(1)以誠實和公開的方式,告知流感最新疫訊、接種疫苗可能的副作用與相關信息;(2)參考民間意見,傳達完整及易懂的流感相關資料;及(3)整合各種訊息渠道,經媒體發佈可靠信息,提升政府與醫療機構的公信力。

(七)全球大流行前的準備

為增旅客的知識,政府機構與旅行社、航空公司合作,鼓勵旅行社或航空公司分發流感或傳染性疾病的宣導手冊給所有乘客,或以視頻方式教育他們流感及其防治的政策。高傳染性的新型流感病毒防治,須快速動員所有專業人士和各種組織協作化。有知識淵博的醫療保健專業人士更須登高一呼發揮預防宏效。

未來展望

Source: ibtimes

臺灣氣候炎熱,禽流感的流行季較短,由2003年流行至今近13年的舊H5N2亞型禽流感病毒,顯示當防疫未斬草除根,極容易造成病毒在當地壯大而成為地方性流行,因此,高危險群的衛生教育與禽畜介面的相關人員,必須對禽流感病毒、禽的病癥與人的臨床表現和防護有深切的認識。若今年新型禽流感H5演化分群2.3.4.4病毒易與其他禽流感病毒形成更新的亞型病毒,對未來防疫工作是嚴酷的挑戰。重要的是,防疫策略須能在禽類徹底執行,並加以定期評量,即可減少後顧之憂。

至2016年1月20日全球已10位H5N6病例,病例數仍增,且有死亡,值得重視。禽流感防疫的全球專家共識仍是致力於偵測作為及流行爆發時的馬上就地防治。臺灣2015年鵝農、鴨農損失慘重,今後水禽的偵測系統需有嶄新的強化作為。其次,一旦發生流行,即時流行調查,尋找確切危險與保護因子也十分重要,尤其以地理資訊系統觀察縣市的擴散情形,顯示未來應如人的傳染病,不能等待實驗結果,即開始推動防疫策略,且應研發快速簡便的實驗診斷法,由兩不同單位確診。疫情高峰時的人、禽、物流不慎污染而易引發疫情向外散佈,所以平日禽農的「生物安全」教育更顯重要。

由於過去對禽流感健康威脅潛力的認知不足,未來較妥善做法是禽農彼此間有互助團體,即以保險互助做法,相互觀摩學習,將防疫在第一時間點到位,縮小其衝擊面;更重要的是自地方至中央須建立獸醫防疫醫師網,推動動物衛生的專業判斷與專責,猶如2003年SARS流行時疾管局作為,尤其在觀念上,若遇人畜共通潛力的傳染病,必須在一開始即防杜所有跨種傳播的可能,絕不等待病毒胺基酸改變至會傳染哺乳類,才積極防治。此外,在主要養禽縣市中,須展開豬等哺乳類的病毒與血清偵測,尤其醫護人員遇流感病患須了解其職業與暴露史,並嚴防感染。因流感病毒一向在人們輕忽中壯大致全球流行,此刻更需我國上下齊心協力,審慎防疫。最後,誠請農委會每月盡早公布不同禽種的H5與H7禽流感病毒氨基酸序列,愈多人參與防疫,才易成功。

致謝

本文特別謝謝三位傳染流行病學家(中研院生醫所何美鄉老師、農業科技研究院副院長楊平政與中興大學獸醫學院張照勤特聘教授)、臺大獸醫系禽病毒學者王金和老師與醫用病毒學者高全良老師的審閱。2015年禽流感流行期間,特別感謝農委會、防檢局、家畜衛生試驗所、國防部、衛福部疾管署、行政院、各縣市動物防治所的防疫人員的熱心協助、臺灣四所獸醫系所及謝快樂教授、賴秀穗教授等等大學教師的鼎力支持及林書宇小姐的行政與打字協助。

延伸閱讀

  1. Wang, C. et al., Comparison of patients hospitalized with influenza A subtypes H7N9, H5N1, and 2009 pandemic H1N1. Clin Infect Dis, 2014.
  2. Wei, S. H. et al,. Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respir Med, 2013.
  3. Liu, M. D. et al., Changing risk awareness and personal protection measures for low to high pathogenic avian influenza in live-poultry markets in Taiwan, 2007 to 2012. BMC Infect Dis, Vol.15: 241, 2015.

〈本文轉載自《科技報導》410期〉

3什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

看《科技報導》議論科學五四三

The post 禽流感知多少?禽流感的偵測、防治與全球大流行前的準備 appeared first on PanSci 泛科學.

海鳥吃塑膠?日益嚴重的海洋塑膠危機——《科學月刊》

0
0

黃向文/國立臺灣海洋大學海洋事務與資源管理研究所教授兼所長,本刊副總編輯。

2015 年9 月,一篇海鳥誤食海洋垃圾的研究發表於《美國國家科學院院刊》(Proceeding of the National Academy of Sciences),許多媒體引述標題非常聳動,如「海水汙染嚴重,9 成海鳥曾吞過塑膠」、「2050 年99% 海鳥都會吃到塑膠」,真的嗎? 99% 海鳥都會吃到塑膠?這可是非常嚴重的環境問題。

因應人類對於塑膠的需求量,塑膠產量從1950 年代以來每11 年倍增,也因為塑膠難以分解,加上儲存、處置的不當,導致大量塑膠被棄置、流入海中、成為主要的海洋廢棄物。最近研究數字顯示,海中塑膠垃圾的數量以對數成長,其密度已達每平方公里58 萬片。這些海洋垃圾可能使海洋生物因為纏繞、吞食無法消化、或者內含有毒物質致死。迄今,已有600 種海洋生物體內發現海洋垃圾。於是,一群關心海鳥的科學家找出1962~2012 年間曾紀錄海鳥誤食垃圾的文獻,發現135 種海鳥中有80 種(59%)曾誤食海洋

垃圾;個體方面則平均有29%。配合186 種海鳥的分布、覓食策略、體積大小、抽樣方法,再結合全球海洋塑膠垃圾的分布,模擬預測海鳥誤食海洋垃圾的高風險區。進而推論倘在今天進行此研究,預估90%海鳥個體的體內會有垃圾,到2050 年則有99% 種類的海鳥會誤食海洋垃圾。結論也提到,誤食垃圾風險最高的是在紐澳鄰近海域、海鳥種類分布最多的區域,並非海洋垃圾密度最高的水域。

試想,如果你有機會在2050 年到海邊賞鳥,每看到100隻就會有99 隻胃內有海洋塑膠垃圾,那是多驚人的景象?先回頭比較原文與媒體報導,「99% 海鳥」與「99% 種類的海鳥」就有不同,「種類」與「數量」是截然不同的定義。這是中文媒體在翻譯外文新聞時,未仔細查證的結果。其次,倘從數據反向解讀,海鳥中有41%物種(或71%個體)沒有誤食塑膠垃圾,從這個數字來看是否會比較安心?

此類研究屬於後設分析(Meta-analysis),利用多篇前人研究,將各文章之統計資料經過標準化等各種統計過程,得到整合性結果,提供世人對該議題的全面性了解。不過,我們可以從相關資料來源與方法,思考幾項此類環境議題研究的可能誤差:

Q1. 抽樣種類偏差?

從「種類」來說,全世界海鳥多達350 種,生態習性各有不同,對於掠食表層食物的鳥類,誤食垃圾的情況較嚴重;而覓食深層食物的海鳥,誤食垃圾比例較低。但該研究蒐集到的鳥種資訊未達半數,如何僅能依據半數海鳥的分布與誤食趨勢,就誇言另外半數的海鳥在未來30 年內也都將誤食海洋垃圾?

Q2. 抽樣地點誤差?

有關分布水域,結論認為海鳥誤食海洋垃圾的熱點在紐澳外海等南半球水域,然而,此觀點也顯示其可能為抽樣地點的誤差,因為紐澳水域海鳥種類眾多,相關研究也多。然而,該文章沒有交代相關論文的涵蓋水域或是各區域內的研究數量。因此,目前認為誤食比率較低的水域,其實可能是因為研究較少而造成,這部分仍尚待討論。另有科學家表示,在南極洋裡棲息有數量極高的海鳥(例如企鵝),但鮮少發現他們誤食塑膠垃圾,這部分可能歸功於南極條約的保護力,所以未若作者所言的嚴重。反之,在夏威夷群島研究信天翁的海鳥學者則認為夏威夷鄰近太平洋海域,才是海洋垃圾密度最高的地區,學者也見到越來越多住在中途島的信天翁幼鳥因為誤食海洋垃圾而亡,不認為熱帶水域相對比較安全。

Q3. 研究發表謬誤?

對於此類研究,都可能存在「研究發表誤差」,如果科學家蒐集到的海鳥胃內沒有誤食垃圾,則不具有發表效應,也不會有期刊接受此類「沒有保育價值」的文章。通常是情況越嚴重者,被接受的機率越高,長久以往,能夠見諸期刊的都是情況較危急的研究,因此,如果單純以研究報告分析,可能會造成高估。

這篇文章令人聯想到兩篇海洋保育界的文章,其一是在1990 年代,澳洲科學家發表一篇有關日本延繩釣漁船誤捕的海鳥數量,推估結果認為南太平洋每年因為延繩釣漁業而混獲的海鳥超過十萬隻,引起保育團體憂心忡忡,呼籲政府採取行動。為此,聯合國糧農組織召開多次專家諮商會議,並於1999 年通過乙份避免延繩釣漁業意外混獲海鳥之國際行動計畫,之後更因此成立「信天翁與海燕保育公約」,力推各項海鳥保育措施。但該研究僅利用一艘漁船在短短數個月期間、澳洲沿岸水域的混獲狀況。實際上,海鳥分布並非平均,漁船作業水域亦然。該文章忽略此現象,直接相乘結果造成此極大偏差,之後發表的文章也依據混獲變化情況下修數值。但不可諱言,因此引發的海鳥保育浪潮也的確發揮保育功效。

無獨有偶地,一群英美科學家在2006 年發表一篇文章,預估2048 年將無魚可吃,亦引起各方關注。即便受到一些海洋漁業學家的質疑,第一作者隨後也在2009 年發表文章表示此類過度漁撈的危機能夠被控制。不過,在2006年之後,因應該文章的論點而發起的許多海洋資源保育行動、生態標章等開始風行,相信對於資源保育仍有一定之成效。

所以,從研究方法觀點來看,該等論文或有可議之處,然而,不過才兩周之後,一篇類似的文章隨後於《全球變遷生物學》(Global Change Biology)期刊發表,該文以海洋垃圾與海龜分布區域的資料進行模擬,表示有52% 的海龜可能誤食海洋垃圾。開始有科學家評論這現象有如海洋版寂靜的春天,塑膠垃圾對於海洋的危害已經不下當年DDT 對於陸地環境的危害,我們應該採取積極的行動全面抵制、減少塑膠類垃圾的使用,這才是研究之後更深遠的呼籲吧!

The post 海鳥吃塑膠?日益嚴重的海洋塑膠危機——《科學月刊》 appeared first on PanSci 泛科學.

18 世紀臺灣西南沿海真的發生海嘯嗎?——《科學月刊》

0
0

wave-11061_640

洪奕星/國立臺灣海洋大學應用地球科學研究所教授,多年從事海域和陸上地質研究。退休後轉業為臺北市中崙諮商中心,諮商心理師。

謎般的海嘯歷史記錄

臺灣地區素來有許多關於海嘯的文獻紀錄,在歷經 2004 年南亞海嘯以及 2011 年日本宮城海嘯後,因死傷慘重震驚全世界,也再度掀起國內外研究海嘯的熱潮。臺灣歷史上的海嘯,依據資料蒐集與可信度分析,僅有 1867 年發生在金山基隆一帶的海嘯是公認比較確定的,其他發生在南臺灣的海嘯記錄,雖有信其為真者,但大都仍受到質疑。

2004年印尼海嘯後,村落受損嚴重。圖/U.S. Navy photo by Photographer's Mate 2nd Class Philip A. McDaniel

2004年印尼海嘯後,村落受損嚴重。圖/U.S. Navy photo by Photographer’s Mate 2nd Class Philip A. McDaniel

然而在 2015 年 10 月,新加坡南洋理工大學地球觀測研究所的李琳琳等學者,在國際性《地球物理研究通訊》(Geophysical Research Letters)期刊上,發表了一篇以〈是何原因造成了在 18 世紀襲擊臺灣西南海岸的神秘海嘯〉為題的文章,在文中引述《臺灣采訪冊》(Taiwan Interview Catalogue)以及另外兩篇外國文獻所記載的,在 1781 年 5 月份的晴朗天氣之下臺灣西南部突然發生了海嘯,侵襲了屏東東港大鵬灣一帶並淹沒附近的村落,估計海嘯波高可能有 5 到 10 公尺,或甚至更高,在當時造成重大的傷亡。

1781 年海嘯的可能成因

透過「柯奈爾多格複合海嘯模式(COMCOT)」模擬此一海嘯的成因,李琳琳等認為要能造成此一波高超過 5 公尺的海嘯,地震規模便必須要大於地震矩規模 8.6(magnitude scale, Mw)。然而此一地震規模所產生的海嘯波,不會只有侵襲臺灣西南部海岸,也一定會波及臨近的大陸沿海和菲律賓的呂宋島。但是她們卻遍尋不著在 1781 年間大陸廣東和福建沿海,以及巴士海峽南側的呂宋島,有任何海嘯侵襲的記載,因此她們認為此一大地震並未發生,所以將地震引發海嘯的成因排除在外。此外,由於在臺灣西南部並無活火山,所以她們也不認為當年的海嘯是由附近的火山噴發所造成。

排除了斷層錯動和火山的肇因之後,便只剩下由地震所觸發的海底大面積滑坡(Submarine mass failure),才有可能引發局部區域型海嘯。是故,李琳琳等人選擇了三處最大的海底滑坡區來模擬海嘯的形成和傳播。依據反覆的模擬測試後,雖然未能進一步加以定年確認,但仍不會影響她們的推論,也就是說 1781 年的海嘯,確實是有可能經由高屏斜坡上部的大面積海底滑坡所造成的。該文最後並強調現今在臺灣西南部同一海嘯受災的地區,人口已增加逾三百萬人,同時在恆春還增建了一座馬鞍山核能發電廠(核三廠),要是再度發生海嘯的話,恐怕會造成一場大災難。

海嘯的可能性評估

此文刊出後讓人驚訝的是,國人對於南部的海嘯是否真的曾經發生過,仍抱著存疑的態度,臺北市立教育大學教授林明聖在 2006 年還曾經為文指出 1781 年海嘯的可能性為零,那為何新加坡的學者會這麼篤定該年確曾發生過海嘯事件呢?經細查其內文,李琳琳等雖然引用了中外共三則歷史文件記錄,並研判這三則均是在報導此一海嘯災難,不過她們同時也指出此等文件所記載的年代並不一致,且所造成的損害程度也差異甚大。

對於記載不一致的歷史文件記錄,林明聖特別強調必須先區別是親歷災難當事人的記述,還是轉述或翻譯的記載。其中對於轉述或翻譯的文獻,就必須謹慎的考證。關於此一造成南臺灣死傷慘重的 1781 年海嘯事件,經過林明聖詳細的比對和查證後,指出其實是 1867 年的基隆海嘯事件被錯誤的轉載了。依據他的論述,南臺灣在18 世紀並未發生過海嘯。若然,則李琳琳等應該是引用了錯誤轉述和翻譯的歷史文件記錄。

筆者曾在 2013 年時經由整個東南亞的區域地質背景分析,指出臺灣地區不大可能發生類似印尼和日本一樣規模的大海嘯。這是因為日本本州外海的日本海溝,以及印尼蘇門答臘外海的巽他海溝,都己經發育成熟,而且板塊仍持續活躍的在聚合碰撞。至於在臺灣南方的馬尼拉海溝,由於南海海盆從四千萬年前以來,即已停止分裂擴張,所以不但發育還未成熟,也早已不再有活躍的隱沒碰撞作用了。此外,在北臺灣東側的琉球海溝,其增積岩體相對的小且深,顯示發育也未成熟,同時由於琉球海溝北段的弧後盆地早已停止分裂擴張,而其南段的琉球群島也無活火山,顯示琉球海溝也不再有活躍的隱沒作用,是故推論不可能發生有大規模的海嘯。

台灣南海的海底地形,其中可以看到由歐亞板塊隱入菲律賓海板塊的馬尼拉海溝。

台灣南海的海底地形,其中可以看到由歐亞板塊沒入菲律賓活動帶的馬尼拉海溝。

雖然李琳琳等所主張的海底滑坡,足以產生局部區域型海嘯是有其可能性,不過也得要有諸多條件的共同配合才行,這些條件包括了海底滑坡的地理位置、滑坡的體積大小、起滑和停止滑動的深度,以及整體滑動的速度等,缺一不可。因此,要由海底滑坡來產生海嘯也不是一件容易的事情,所以大家不必過於驚慌害怕。儘管在臺灣西南部發生海嘯的機會不大,但仍應積極謹慎的繼續進行海嘯的研究與防範,以免過於輕忽大自然,而招致難以彌補的災難。

延伸閱讀:

  1. 林明聖,〈歷史海嘯的研究方法〉,《地質》,25 卷第 2 期 71-81 頁,2006 年。
  2. 洪奕星,〈臺灣海域會發生大海嘯嗎〉,《臺灣博物季刊》,32 卷第 4 期 88-93 頁,2013 年。

2016-01-cover〈本文選自《科學月刊》2016年1月號〉

延伸閱讀:
海嘯的數學
雲端學地震

什麼?!你還不知道《科學月刊》,我們47歲囉!
入不惑之年還是可以
當個科青

The post 18 世紀臺灣西南沿海真的發生海嘯嗎?——《科學月刊》 appeared first on PanSci 泛科學.

OvaScience 真的助你好孕嗎?——《科學月刊》

0
0

文/黃正球,美國貝勒醫學院發育生物學博士,研究領域為瘙癢與疼痛的神經機制,目前於聖路易斯華盛頓大學進行博士後研究。

pregnancy-775041_640

從看到驗孕棒上出現那兩條線的興奮,到從超音波上看見他模糊的輪廓、聽見他噗通心跳的感動;從一起佈置嬰兒房、牆壁要粉刷哪種顏色的期待,到在產房經歷陣痛分娩的磨難,第一次聽見他的哭聲、握住小手時所流下的淚水⋯ ⋯ 迎接新生命的到來,是大多數已婚夫妻引領翹首的希望,而從兩人世界升級成尿布奶瓶隨身,也是沉重卻甜蜜的負擔。

然而,新生命這份禮物,卻不是每對配偶都能輕易獲得的。由於晚婚錯過生育的黃金期、工作壓力、生活作息不正常,以及自然環境的惡化種種因素,國人不孕症的比例據衛生福利部的統計,大約在 10~15% 左右,也就是說每 7~10對配偶就會有 1 對經歷不孕的困擾!

人工生殖技術

Icsi

將精子直接以注射的方式打入卵子中。圖/wikipedia

不孕症的定義是「一對夫妻在無避孕情況下,經過一年正常性生活,仍無法成功懷孕」。不孕症的原因很多,男女雙方的身心因素皆可能造成不孕,比率大約是一半一半。由於人工生殖技術(Assisted Reproduction Technology)的發展,很多的不孕症配偶都有機會使用自體精卵,享受弄璋、弄瓦之喜。目前最常用的人工生殖技術,分為人工授精(Artificial Insemination)和試管嬰兒(In Vitro Fertilization)兩類。人工授精是透過促排卵藥物或針劑,增加卵巢中一次成熟的濾泡數目,經由正常性交或子宮內輸精,達到提高懷孕機率的方式。而試管嬰兒的手續則較為複雜,主要也是先透過針劑誘導排卵,提高成熟濾泡數目,經由施行陰道內視鏡配合超音波(麻醉手術),取出成熟濾泡中的內容物(通常有一顆成熟的卵子細胞),再將健康的卵子與篩選過的健康精子放在培養皿內,透過受精產生胚胎,經過3~5 天的體外培養後,選擇發育成功的胚胎,以細管植入子宮內著床。從療程開始到知道是否懷孕,一次人工授精週期大約是3~4 週,試管嬰兒則可能長達 6~8 週。在臺灣,一次人工授精的自費費用大概是 2~3 萬元(在美國是 千 ~ 3 千美金),而試管嬰兒則是 10~12 萬元(在美國平均是 萬 2 ~ 1 萬 5 千美金)。可觀花費造成的經濟負擔、連續好幾天在肚皮上施打誘導排卵針劑造成的不適,再加上頻繁請假就診與擔心受孕失敗重來的壓力,讓不孕症夫妻持續在「既期待又怕受傷害」的狀態下循環 ⋯ ⋯

新興技術帶來生育光輝?

圖/flickr@Trevor

圖/flickr@Trevor

然而一家位於美國麻州的生技公司 OvaScience,大膽地向世人宣告他們有更進一步治療不孕症與降低治療次數的驚人進展,於 2014 年開始,該公司在加拿大、土耳其以及杜拜等地,提供了號稱能有效增加試管嬰兒成功率的 AUGMENT  療程(作者暫譯:增好孕)。從第一位 AUGMENT 寶寶──讚恩.羅傑尼(Zain Rajani)於去年 4 月在多倫多健康出生後,至去年 11 月為止已有 17 位 AUGMENT 寶寶相繼誕生於世,且會在未來一年內持續增加(據OvaScience 稱,使用該療法的不孕夫妻已超過兩百對)。巴拿馬與西班牙的不孕治療中心於去年底開始提供 AUGMENT,而日本和英國的生殖診所也在蠢蠢欲動。

究竟 OvaScience 所提供的 AUGMENT 療程是什麼先進技術? 其背後的科學原理又是如何呢?

先讓我們回到 1990 年代末期。由於「初級卵母細胞(Primary Oocyte)無法進行有絲分裂,所以女性體內的卵細胞數在出生後即是固定的」這個鐵律,那時有一派生殖學家提出卵細胞中的粒線體衰老,是造成卵子品質與女性的「受孕/ 活產率」隨年齡增長而大幅下降的原因之一。而當時這派學說的領軍人物賈克.柯恩(Jacques Cohen),大膽嘗試將健康婦女卵子裡的細胞質(包含粒線體)打進不孕婦女的卵子內作為能量補充,再經過試管嬰兒的一般流程,成功地讓 30 位不孕婦人中的 13 位受孕,但這項技術稍後卻因為涉及三方親源(3-Parent In Vitro Fertilization)的爭議而被禁止,成功的樣本數也停在雙位數。

而 OvaScience 推出的 AUGMENT 則是利用微創手術,採集女性自體卵巢皮質中的卵源幹細胞(Oogonial Stem Cell),從這些稀有的細胞中選萃粒線體,再將粒線體與單隻精蟲混合,以顯微注射的手段同時注入患者較不健康的卵子內,以提供其受精與之後胚胎發育所需的能量。根據與該公司合作的不孕診所 2015 年初在國際醫學期刊 JFIV Reprod Med Genet 上發表的論文,AUGMENT 療法已讓 93 位中的 20 位,曾經接受過 2~4 次試管嬰兒療程失敗的婦女成功受孕或待產。OvaScience 並發下豪語,將於近期內運用其採集卵源幹細胞的技術,以自體移植或體外培養卵子的方式,提供不孕症婦女更多的治療選擇。

圖/SciBX

等等!剛剛不是才說卵細胞數在出生後即是固定的,哪來的卵源幹細胞,還可以進一步產生卵子啊?這個問題,同時也是眾多發育生物學家及生殖學家,對 OvaScience 創辦人強納生. 提利(Jonathan Tilly)一直持續提出的疑慮。提利於 2004 年在成年小鼠卵巢中發現卵源幹細胞,2012 年進一步以 DDX4 蛋白為標記,從人體卵巢皮質中純化卵源幹細胞且成功培養出卵子,但相關專家們無法重複提利實驗室的研究結果,對提利大加撻伐,而且也對 OvaScience 不分享 DDX4 專一抗體,以便重現實驗結果的行為提出質疑。關於種種指控,OvaScience 的總裁亞瑟. 才納柏斯(Authur Tzianabos)只輕描淡寫地說:「人們對於這種典範轉換(Paradigm-Shifting)的成果,總是接受地特別慢。」

美國法規尚未通過施行

值得注意的是,即便美國食物藥品管理局以科學證據、臨床試驗樣本不足為由,迄今未通過任何 OvaScience 所提供的不孕療法在美施行,大多數的投資分析師卻對 OvaScience 的前景看好,畢竟人工生殖診所使用新式療法的規範在各國有鬆有嚴,而AUGMENT 雖然一次療程基本要價得2 5 千美金,全球卻仍有許多嘗試過不孕療程卻屢敗屢戰的夫妻, 指盼著送子鳥大駕光臨的一日。由於 AUGMENT 的療效真偽仍難斷定,建議在臺灣的朋友們,在看到這樣讓人心動的技術宣傳而打算花大錢跨海求子之前,還是先跟信任的婦產科醫師討論過後再下決定吧!

2016-02-cover

 

 

〈本文選自《科學月刊》2016年3月號〉

延伸閱讀:

不孕患者的希望之歌—試管嬰兒的漫漫長路

幹細胞風雲再起

什麼?!你還不知道《科學月刊》,我們46歲囉!

入不惑之年還是可以當個科青

The post OvaScience 真的助你好孕嗎?——《科學月刊》 appeared first on PanSci 泛科學.

創造化學分子何其美妙—中研院醣分子專家吳宗益專訪——《科學月刊》

0
0

作者/ 許雅筑|《科學月刊》編輯,臺灣大學動物所碩士。理想是用平易近人、充滿樂趣的方式把科學傳達給大眾。

 

專心致志做自己喜愛且擅長的事,並獲頒美國化學會醣科學「年輕研究學者獎」,這個和生物題材息息相關的化學獎項,標誌著吳宗益從化學踏足到生物領域的初步成功。「其實是巧合。」吳宗益帶著親切的笑容,侃侃而談他投入醣科學研究的歷程。事實上他在高中性向測驗的結果適合文組,他說,當時自己的確對數學不在行,但台中一中大多數班級都是理組,因此吳宗益在選組時有些猶豫,後來跟導師討論後,才決定唸第二類組。但他很快地就在高二的化學中找到興趣,不論是課堂上的聽講,或是在自然科學研習社裡的實驗,都很喜歡,「我那時就很喜歡做菜,做有機化學實驗的感覺尤其像在煮菜一樣,非常有趣」。

1

美國化學會醣科學「年輕研究學者獎」證書。

從有機化學啟蒙,在合成中悠遊

填大學志願時,吳宗益篤定地都填了最愛的化學系,也順利的進入交通大學應用化學系,在那裡他遇到了研究的啟蒙者──吳獻仁老師。吳老師的有機化學課程很精采,在大二升大三的暑假,他與許多同學都找吳老師做專題研究。然而要忍受實驗中硫分子所散發的惡臭實在不容易,「過了一個暑假,十個人跑掉了七個。」但吳宗益繼續堅持,加上遇到很好的學長帶領,努力了兩個暑假,他們終於合成出結構像藝術品般的籠狀化合物。

之後吳宗益繼續在交大應化系唸碩、博班,一路也都是在吳獻仁老師的指導下,持續合成這類像籠狀、碗形的化合物,期待它們的特定構型,可以作為捕捉金屬離子的武器。吳宗益在升碩二時成功設計合成出一個化合物,本想多做些延伸的課題後再發表,沒想到過幾個月後,同領域的印度學者也說合成出類似的東西了,為了搶得先機,他們等不及完成後續研究,只能趕緊投稿至國際期刊。這次經驗,讓吳宗益體會到研究的競爭性與即時發表的壓力。

在博士班時期,指導教授給他很大的自主空間,「我喜歡有自己的想法,可以自己設計實驗去做出來。」他去清大修習汪炳鈞老師的高等有機課程時,從臭氧裂解後結合氨水的反應中得到啟發。回去做實驗後,他成功的把籠狀化合物五個端點上的氧置換成氮,之後還能再置換成硫,等於可隨心所欲地改造。不過最後測試這些分子卻一點也沒有金屬結合力,原來這些碗公狀的分子在反應過程中,就像收納碗盤一樣自行堆疊起來了,變成了柱狀結構,甭論去抓離子。雖然這個意外的結果讓他感到些許挫折,不過他的確創造出來很多分子,「那時把分子合成出來,其實就已經很興奮了。」他打趣回憶說,「我每次一做出來就回家跟老婆講:『發了!做出來了!』」

從生物找問題,向化學找工具

生命現象中有許多問題等待人們克服,有時得從其他領域找解法。吳宗益說,生物和化學兩個領域是息息相關的,「我們從生物方面去找問題,當要解決問題時,常常需要化學的工具,唯有化學才能創造分子出來。」2000 年吳宗益博士畢業後到了中研院服國防役,他幸運地進到化學所翁啟惠(現任中研院院長)的實驗室,自始進入生物學的領域。沒想到翁啟惠對吳宗益的第一個問題竟是:「你博士班做這個要幹嘛?」翁啟惠接著告訴他,研究工作不能單只考慮有不有趣,因為研究生涯有限,應該要慎選能發揮最大貢獻的題目。這段談話對吳宗益猶如醍醐灌頂,「我開始感覺(研究這件事)好像不太一樣了。」

化學所中有豐沛的資源,而翁啟惠的領導風格也是讓下屬擁有自主性,喜歡自己發想的吳宗益在那裡如魚得水。2003 年臺灣爆發SARS 疫情,深切讓他感受到生物研究的重要性,那時翁啟惠是研發抗病毒新藥的計畫主持人,實驗室匯集了從全國各地提供的藥物等待篩檢,甚至連民間的祖傳祕方都有,藥品堆積如山!吳宗益接下這項任務,開始處理藥品,過著天天與藥為伍的日子,經由當初任職於三峽預防醫學研究所的中校詹家琮的幫忙,他最後篩選到可用的藥物,也將研究成果發表在《美國國家科學院院刊》(PNAS)。這就是他第一篇與生物學相關的論文,他直言:「真的寫得很痛苦!」但他因此開始涉略到應用性的研究了。

退伍後吳宗益到美國的斯克里普斯研究所(The Scripps Research Institute)做了兩年博士後研究,2006 年他回國進入中研院基因體中心,開始深入參與許多生物學研究。他從疫苗相關的題目,接觸免疫學,了解細胞膜上的分子構型深深影響生理運作,進而關注在醣分子的研究上。

2

一醣一世界

醣類在人體內除了供應能量之用外,其實它本身的複雜結構還有著更多的生理角色,醣分子是細胞辨識的標記,也影響著細胞傳遞訊息,也因此醣科學在近年成為一個蓬勃發展的學門。

目前醣化學領域的兩個重要問題包括:一、演化上越高階的生物體醣化的方式越複雜,並花費很大的能量合成與修飾醣類,顯示醣化與生物體的功能演進高度相關;二、癌細胞表面醣類的構型和正常細胞的不太一樣,它們有哪些影響?

鑽研了近十年,吳宗益認為醣化學領域中未知的問題仍然很多,「在我接下來幾十年的研究工作裡,我能夠解決這裡面的一、兩個重要的問題,那已經不簡單了。」因此並未想到再轉向去研究其他的問題。

沒想過要出國,就是留在臺灣

吳宗益碩士班畢業時就結婚了,也因此他沒想過出國攻讀博士學位。他笑說:「那時候只是怕考不上研究所。」一心一意的就是要留在臺灣好好完成學業。雖然他之後到了美國做博士後研究,因為是領取公費補助,兩年後也必須回國。吳宗益說會留在學術單位是由於喜歡做創造性的工作,所以不考慮進入大多在改善製程、做固定產品的工業界;又因為比起教學他更志在研究,於是最後進入中研院。

吳宗益所受的研究訓練幾乎是在國內養成,問他臺灣研究環境跟在國外兩年所見有何差異?他覺得中研院的硬體設備其實更好,「最大的不同,是想問題的角度,臺灣學生自己想題目的動力較少。」通常學生都全盤接受老師分配的題目,或許是學生太「尊師重道」,不太敢反駁老師。「在國外看到學生和指導教授爭得面紅耳赤,是稀鬆平常的事。」在「探討問題」面前,人人的地位是平等的。他很認同許多好的研究其實也不是原先所意料的樣子,有了懷疑和不斷改變策略,或許會有更好的發展。

就國內外博士的程度差別來說,吳宗益認為在英文能力上難免有落差,但這是可以克服的,如有參加國外研討會或國際合作的需求,就會去增進練習;另外現在資訊發達,可以透過網路了解各地學者的研究內容,並與他們溝通聯繫。所以待在國外和國際觀沒有直接關係。他覺得有志學術研究不一定要出國,而是個人適性選擇,例如日本因為國內有很完整的學術訓練,學生就不太會選擇出國,因為留學歸國的人有時候反倒不容易融入已自成體系的學術圈。吳宗益認為:「你在選擇題目時,怎麼去看問題,會比較重要。」訓練找到重要問題的能力,比單單「在國外待很長的時間」還有用。

怎麼選擇重要的題目?

在中研院裡,他很推崇一個稱為「mentor system」的制度,這對年輕學者很有幫助。院內的研究人員,每隔一段時間就能與國內外頂尖的學者討論所從事的課題,甚至會受到嚴厲的批評,但這樣的過程能夠適時的提醒年輕研究者投入的方向與策略,不會一個人埋頭鑽牛角尖。就像他和翁啟惠討論時可得到很棒的啟發,讓他在醣研究上一路挺進。

從化學到生物領域,等於進入一座新的、龐大複雜的知識寶山,吳宗益不可能一下子全部吸收,他的方法是先從一個點開始,例如針對某種疾病,找出相關的醣分子將之合成出來,確定結構之後再往回推究原因,看看實際上哪些相關機制出了問題,以此來解析問題會稍微簡單一些。

談到獲得了醣科學「年輕研究學者獎 」,吳宗益覺得獲獎固然是榮譽,但「好像沒有那麼大的差別」,因為從獲獎前到獲獎後,他依然是不斷的在醣科學領域努力!不過他想這可能有鼓舞國內年輕學者的作用吧,一般他們較不敢主動申請國際獎項。其實不用妄自菲薄,當初也是翁啟惠建議他主動申請這個獎項的,主動出擊就可能有機會。

基礎與實用之間

政府推動國內生技產業的計畫進行十多年了,問到吳宗益如何看待國內生技產業,他表示相當樂觀,認為熱度持續在加溫中。就如他們實驗室所研發的東西很多都有專利,而且不少技術已轉移給能夠承接的生技公司。但在許多實驗室紛紛以技轉為研究目標的同時,吳宗益也提醒,研究人員不必一窩蜂追求熱門主題,基礎的研究還是需要有人做,研究只要有價值就會有產出。

高中生選大學校系也是,他建議還是要依照自己的興趣。吳宗益雖然對數學苦惱,但兒子對數學卻展露出興趣和天分,他納悶說:「不曉得他自己怎麼弄會的?」他鼓勵兒子朝自己喜愛的方向發展,如果不確定要唸哪些應用性質的科系,就選數學系也不錯。「基礎科學就像練武功,練好內力,其他的招數也很容易能練成。」吳宗益舉例就像是《金庸》裡的張無忌先練成了九陽神功,才會在短時間內練成乾坤大挪移。他贊同有些大學推行大一、大二不分系的學制,不一定早早就要下決定選系,多體會之後再轉換跑道發展也可以。

他等待學生,太太等待他

吳宗益目前的研究人力大多是博士後研究人員,他解釋大學因為擔負教育的義務,所以研究主力是學生;但中研院是研究單位,所以希望是已受過訓練的人員加入。他帶領部屬的方式,一如他過去的老師,也是給予一個方向,然後等待,沒有太多限制,最後再看看他們需要什麼幫助。他建議研究生衡量自己的能力和興趣選擇實驗室,如果是個性較被動的人,跟著小實驗室的新老師一步一步地做研究,能夠學到很多;而大實驗室的老師大多很忙碌無法親自指導學生,但有充裕的資源,適合能自主做研究的人。

吳宗益做合成化學所投入的時間非常多,他懇切的說,研究人員必須要耐得住做實驗的寂寞與結果不如預期的挫折。事實上,吳宗益很乾脆的承認自己在家庭與研究間沒有達到平衡,他語氣有點抱歉地認為,自己撥給太太的時間沒有很多,「我太太說跟我談話還要抽號碼牌──而且都是最後一號。」雖然沒有言明,但可以想見吳宗益感謝太太的體諒,並做為他最強大的後援支柱,讓他能夠無後顧之憂的在研究領域中不斷前進,探索化學的美好。

2016-02-cover

 

〈本文選自《科學月刊》2016年3月號〉

延伸閱讀:

如何引導跨領域合作能力的學習

追求簡單極致的化學家—清華大學化學系蔡易州教授專訪

什麼?!你還不知道《科學月刊》,我們46歲囉!

入不惑之年還是可以當個科青

The post 創造化學分子何其美妙—中研院醣分子專家吳宗益專訪——《科學月刊》 appeared first on PanSci 泛科學.

Viewing all 153 articles
Browse latest View live




Latest Images